

WP-RM-100 – Wirepas Mesh Dual-
MCU API Reference Manual

Reference Manual

Version: v5.1A

Applies to Wirepas Mesh firmware release v5.0 onwards

This document describes the serial interface API provided by the Wirepas Mesh stack.

Confidential

2
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Table of Contents

1. Introduction ... 4

1.1. Service Access Points .. 4

1.2. Primitive Types... 4

1.3. Attributes .. 5

1.4. Serial Interface Specification .. 6

1.5. General Frame Format ... 6

1.6. Flow Control ... 7

1.7. UART Configuration ... 8

1.8. Endianness and Bit Order .. 8

1.9. Timing .. 8

1.10. CRC Calculation (CRC-16-CCITT) ... 8

2. Stack Service Specification .. 9

2.1. Node Addressing.. 10

2.2. Data Services (DSAP) .. 12

2.2.1. DSAP-DATA_TX Service .. 12

2.2.2. DSAP-DATA_RX Service.. 16

2.3. Management Services (MSAP) .. 17

2.3.1. INDICATION_POLL Service ... 18

2.3.2. MSAP-STACK_START Service .. 19

2.3.3. MSAP-STACK_STOP Service .. 20

2.3.4. MSAP-STACK_STATE Service .. 22

2.3.5. MSAP-APP_CONFIG_DATA_WRITE Service .. 22

2.3.6. MSAP-APP_CONFIG_DATA_READ Service ... 25

2.3.7. MSAP-APP_CONFIG_DATA_RX Service .. 26

2.3.8. MSAP-ATTRIBUTE_WRITE Service .. 27

2.3.9. MSAP-ATTRIBUTE_READ Service .. 28

2.3.10. MSAP-GET_NBORS Service .. 29

2.3.11. MSAP-SCAN_NBORS Service ... 31

2.3.12. MSAP-SINK_COST Service ... 32

2.3.13. MSAP-SCRATCHPAD Services ... 34

2.3.14. MSAP-NON-ROUTER LONG SLEEP (NRLS) Service ... 41

2.3.15. MSAP-MAX_MESSAGE_QUEUING Service.. 45

2.3.16. MSAP Attributes .. 47

2.4. Configuration Services (CSAP) .. 52

2.4.1. CSAP-ATTRIBUTE_WRITE Service ... 52

2.4.2. CSAP-ATTRIBUTE_READ Service .. 52

2.4.3. CSAP-FACTORY_RESET Service ... 53

2.4.4. CSAP Attributes .. 54

2.5. Response Primitives .. 63

2.6. Sequence Numbers ... 63

3
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

3. Common Use Cases .. 64

3.1. Required Configuration .. 64

4. Annex A: Additional CRC Information ... 65

4.1. Example CRC Implementation ... 65

4.2. CRC Test Vectors .. 66

5. References ... 67

4
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

1. Introduction

The Wirepas Mesh stack (hereafter referred to as the “stack”) provides services for the application

layer (hereafter referred to as the “application”). The services are exposed via Service Access

Points (“SAPs”). The SAPs are divided into Data SAP (DSAP), Management SAP (MSAP), and

Configuration SAP (CSAP). The SAP services are provided in the form of primitives and SAP

data is exposed as attributes.

All field lengths are in octets (i.e. units of eight bits), unless otherwise stated.

1.1. Service Access Points

The SAPs provide the following general services:

• DSAP: Provides methods for data transfer to and from the stack (and the network)

• MSAP: Provides methods for transferring stack management information and

reading/writing management attributes. Management attributes provide information of

the run-time state of the stack and are valid only when the stack is running.

• CSAP: Provides methods for reading/writing stack configuration attributes.

Configuration attributes can only be written when the stack is stopped.

Currently, the SAPs are realized as a Universal Asynchronous Receiver/Transmitter (UART)

serial interface.

1.2. Primitive Types

The primitives are divided into four classes: request, confirm, indication, and response. The

general usage of the primitives is as follows (Also see Figure 1):

• A request is issued by the application when it wants to use a stack service.

• A confirm is a reply from the stack to the request issued by the application.

• An indication is issued by the stack when it has data/information it wants to send to

the application. In the point of view of the application, indications are asynchronous

messages from the stack.

• A response is a reply from the application to the indication issued by the stack.

Figure 1. Primitive usage in the communication between the application and the stack

5
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Three different use cases can be identified for the above primitives:

1. Application issues commands to the stack or needs to send data/information.

a. Application issues the appropriate request primitive.

b. The stack responds with corresponding confirm primitive to acknowledge

the request.

2. Application queries data/information from the stack and the stack responds

immediately:

a. Application issues the appropriate request primitive.

b. The stack responds with corresponding confirm primitive containing the

requested data/information.

3. The stack needs to send asynchronous data/information to the application:

a. The stack generates appropriate indication(s).

b. The stack asserts the Interrupt ReQuest (“IRQ”) signal to notify the

application that it has one or more pending indications.

c. The application queries the indications from the stack and acknowledges

every indication with corresponding response primitive.

Note 1: Some application requests may generate an immediate response with which the stack

informs that the request has been taken for processing and in addition optional

indication with which the stack informs that the request has actually been processed.

Note 2: The stack indications are always notified via IRQ and can be queried by the application.

The stack never sends data/information to the application on its own without the

application explicitly requesting it. This enables the application to have full control over

the communication between the application and the stack, and offers full flexibility on

the application architecture (interrupt-based/polling) and scheduling (application can

sleep and run its own tasks when it wants to and communicate with the stack when it

wants to). In an extreme case, e.g. when application MCU pin count is too low, the IRQ

signal can even be omitted and the indication queries can be sent periodically, though

this implementation is not the most energy-efficient nor provides lowest delay depending

on the query interval.

1.3. Attributes

Attributes are small pieces of data that affect the way the stack works, or are used to inform the

application of the state of the stack. Before the stack can be started in normal operation, a few

critical attributes need to be configured properly (see section 3.1).

Attributes can either be read-only, readable and writable, or write-only. The attributes can also be

persistent or non-persistent. If the attribute is persistent, its value will be retained over device

power downs and stack stops, i.e. the value of an attribute is stored in non-volatile memory.

Otherwise, the attribute value will be lost when the device is powered down or the stack stopped.

Note: Although there are no strict restrictions on how often a persistent variable can be updated

by the application layer, each update causes a tiny bit of wear on the non-volatile memory.

If a persistent variable is to be updated periodically, updating it less often than once every

30 minutes is recommended.

6
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

1.4. Serial Interface Specification

The physical interface between the application MCU and stack MCU is Universal Asynchronous

Receiver/Transmitter (“UART”), colloquially called a serial port. The data is exchanged in frames.

1.5. General Frame Format

The serial frames have similar frame separation mechanism as in SLIP (RFC 1055). SLIP framing

works as follows:

• Two octet values are reserved: 0xC0, called “END” and 0xDB, called “ESC”.

• A frame begins and ends with octet 0xC0 (END).

• Any octet of value 0xC0 (END) within the frame is encoded as 0xDB (ESC), 0xDC.

• Any octet of value 0xDB (ESC) within the frame is encoded as 0xDB (ESC), 0xDD.

• Any other octet is passed through as-is.

In addition, two additional END octets are used to wake up the stack side UART when starting

communication. These END octets are present only when communicating towards the stack

UART. The stack UART will transmit a single END octet in the beginning of a frame.

The general format of the serial frame is presented in Figure 2. Note that the different primitives

and corresponding content of the payload (thick border in Figure 2) are specified in section 2. The

meaning of the different frame fields is described in Table 1.

Figure 2. General format of the serial frame

Primitive

ID
Frame ID

Payload

length
Payload CRC

1 octet 1 octet 1 octet N 1 octets 2 octets

END END END END

1 octet 1 octet 1 octet 1 octet

Escaped serial frame content

Serial frame without SLIP encoding

N 2 octets

(N 2 may be longer than N 1 depending on the content of the

frame and the need to escape octets)

Serial frame with SLIP encodingUART wake up symbols

7
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Table 1. General serial frame fields

Field Size Description

END 1

Frame separator, octet 0xC0.
Starts and ends a SLIP encoded frame. In addition two extra END-
octets are used to wake up the stack side UART when starting
communication.

Primitive ID 1

The identified of the used primitive. Different primitives and their
primitive identifiers are specified in section 2.
As a general rule:

• Initiating primitives (request-primitives from the application

side and indication-primitives from the stack side) have

always the most significant bit set to 0.

• Responding primitives (confirm-primitives from the stack side

and response-primitives from the application side) always

have the most significant bit set to 1.

• Confirm.primitive_id = 0x80 | request.primitive_id

• Response.primitive_id = 0x80 | indication.primitive_id

Frame ID 1

Frame identifier. The initiating peer decides the ID and responding
peer uses the same value in the response frame:

• The application decides the Frame ID for a request-primitive

and the stack sends corresponding confirm-primitive with the

same Frame ID.

• The stack decides the Frame ID for an indication-primitive

and the application sends corresponding response-primitive

with the same Frame ID.

Payload
length

1 The following payload length in octets, excluding the CRC octets.

Payload N1

The payload of the frame, depends on the primitive in question.
Different primitives and corresponding content of the payload are
specified in section 2.

CRC 2

Checksum over the whole frame that has not been SLIP encoded,
excluding the CRC octets. When receiving a frame, the SLIP
encoding is removed and the CRC is calculated over the decoded
frame. When sending a frame, the CRC is calculated first and SLIP
encoding is employed after that.

Note: These fields are used only locally for the communication between the application MCU and

the stack. They are not actually transmitted on the network.

1.6. Flow Control

The application MCU is the master in the communication between the application and the stack.

The stack UART receiver is enabled by two wake up symbols (as described in section 1.5) and

any octets received via UART are processed in an Interrupt Service Routine (ISR). Thus, no serial

interface flow control is required when communicating to the stack (flow control may be needed

in upper level if the stack memory runs low due to congestion).

Communication is always initiated by the application MCU. Thus, no serial interface flow control

is required in the application direction either.

8
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

The stack informs pending indications via an IRQ signal. The IRQ signal is active low. When the

stack has pending indications, the IRQ is asserted, i.e. the IRQ signal is pulled down. When the

stack does not have pending indications, the IRQ is not asserted, i.e. the IRQ signal is held high.

The usage of request-confirm and indication-response pairs should always be atomic. This

means, that a new request should not be sent before a confirmation is received for a previous

request (application initiated communication) and a new indication should not be sent before a

response is received for a previous indication (stack initiated communication).

1.7. UART Configuration

When the stack MCU starts up, it chooses a UART configuration by reading the state of dedicated

(hardware dependent) configuration pins. Data bit, stop bit and parity configuration is fixed, but

the UART bitrate has two options, as presented in Table 2.

Table 2. UART configuration

Parameter Value

Baud rate 115200 bps or 125000 bps

Number of data bits 8

Parity No parity bit

Number of stop bits 1

1.8. Endianness and Bit Order

Multi-octet fields are transferred least significant octet first (i.e. little-endian).

Octets are transferred most significant bit first.

1.9. Timing

There is a reception timeout for received UART frames. A transmission of complete API frame to

the stack MCU shall take no longer than 100 ms.

1.10. CRC Calculation (CRC-16-CCITT)

The used CRC type is CRC-16-CCITT. See Annex A for example implementation and test

vectors.

9
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

2. Stack Service Specification

The different services provided by the stack are specified in this section. The specification

includes description of usage, primitives, and frame formats of the services. Table 3 list all the

primitives and their primitive IDs.

Table 3. All primitives and their primitive IDs

SAP Primitive Primitive ID

DSAP

DSAP-DATA_TX.request 0x01

DSAP-DATA_TX.confirm 0x81

DSAP-DATA_TX_TT.request 0x1F

DSAP-DATA_TX_TT.confirm 0x9F

DSAP-DATA_TX.indication 0x02

DSAP-DATA_TX.response 0x82

DSAP-DATA_RX.indication 0x03

DSAP-DATA_RX.response 0x83

MSAP

MSAP-INDICATION_POLL.request 0x04

MSAP-INDICATION_POLL.confirm 0x84

MSAP-STACK_START.request 0x05

MSAP-STACK_START.confirm 0x85

MSAP-STACK_STOP.request 0x06

MSAP-STACK_STOP.confirm 0x86

MSAP-STACK_STATE.indication 0x07

MSAP-STACK_STATE.response 0x87

MSAP-APP_CONFIG_DATA_WRITE.request 0x3A

MSAP-APP_CONFIG_DATA_WRITE.confirm 0xBA

MSAP-APP_CONFIG_DATA_READ.request 0x3B

MSAP-APP_CONFIG_DATA_READ.confirm 0xBB

MSAP-APP_CONFIG_DATA_RX.indication 0x3F

MSAP-APP_CONFIG_DATA_RX.response 0xBF

MSAP-NRLS.request 0x40

MSAP-NRLS.confirm 0xC0

MSAP-NRLS_STOP.request 0x41

MSAP-NRLS_STOP.confirm 0xC1

MSAP-NRLS_STATE_GET.request 0x42

MSAP-NRLS_STATE_GET.response 0xC2

MSAP-NRLS_GOTOSLEEP_INFO.request 0x4C

MSAP-NRLS_GOTOSLEEP_INFO.response 0xCC

MSAP-ATTRIBUTE_WRITE.request 0x0B

MSAP-ATTRIBUTE_WRITE.confirm 0x8B

MSAP-ATTRIBUTE_READ.request 0x0C

MSAP-ATTRIBUTE_READ.confirm 0x8C

MSAP-GET_NBORS.request 0x20

MSAP-GET_NBORS.confirm 0xA0

MSAP-SCAN_NBORS.request 0x21

MSAP-SCAN_NBORS.confirm 0xA1

MSAP-SCAN_NBORS.indication 0x22

MSAP-SCAN_NBORS.response 0xA2

MSAP-SINK_COST_WRITE.request 0x38

MSAP-SINK_COST_WRITE.confirm 0xB8

MSAP-SINK_COST_READ.request 0x39

MSAP-SINK_COST_READ.confirm 0xB9

MSAP-SCRATCHPAD_START.request 0x17

MSAP-SCRATCHPAD_START.confirm 0x97

MSAP-SCRATCHPAD_BLOCK.request 0x18

10
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

SAP Primitive Primitive ID

MSAP-SCRATCHPAD_BLOCK.confirm 0x98

MSAP-SCRATCHPAD_STATUS.request 0x19

MSAP-SCRATCHPAD_STATUS.confirm 0x99

MSAP-SCRATCHPAD_UPDATE.request 0x1A

MSAP-SCRATCHPAD_UPDATE.confirm 0x9A

MSAP-SCRATCHPAD_CLEAR.request 0x1B

MSAP-SCRATCHPAD_CLEAR.confirm 0x9B

MSAP-MAX_QUEUE_TIME_WRITE.request 0x4F

MSAP-MAX_QUEUE_TIME_WRITE.confirm 0xCF

MSAP-MAX_QUEUE_TIME_READ.request 0x50

MSAP-MAX_QUEUE_TIME_READ.confirm 0xD0

CSAP

CSAP-ATTRIBUTE_WRITE.request 0x0D

CSAP-ATTRIBUTE_WRITE.confirm 0x8D

CSAP-ATTRIBUTE_READ.request 0x0E

CSAP-ATTRIBUTE_READ.confirm 0x8E

CSAP-FACTORY_RESET.request 0x16

CSAP-FACTORY_RESET.confirm 0x96

Note: The general framing follows the format described in section 1.5. For clarity, the figures of

the frames presented in this section also include the general frame fields (Primitive ID,

Frame ID, Payload length, and CRC), but their descriptions are omitted as they are already

explained in section 1.5.

2.1. Node Addressing

The Wirepas Mesh Dual-MCU API services use a 32-bit address to indicate sources and

destinations of packets.

Two special addresses have been reserved. First, address 0x0000 0000 (zero) or 0xFFFFFFFE

(4 294 967 294) is used as the anySink address which identifies that the source or the destination

of a packet is an unspecified sink on the network. The highest address 0xFFFF FFFF is used as

the broadcast address. It is used to transmit a downlink packet to all nodes on the network from

a sink.

Nodes are not allowed to use these two special addresses as their own address. Similarly,

addresses in multicast address space cannot be used as own address.

The addresses are summarized in Table 4.

11
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Table 4. Addressing summary

Address type Valid address space Description

Unicast

0x00000001-
0x7FFFFFFF
(1 – 2 147 483 647)
and
0x81000000-
0xFFFFFFFD
(2 164 260 864 – 4 294
967 293)

Valid unicast addresses. Each node on
the network must have one of these
addresses set as its address. Two or more
devices with identical addresses should
never be present on a network.

Broadcast
0xFFFF FFFF
(4 294 967 295)

Broadcast address with which a packet is
delivered to all nodes on the network

AnySink

0xFFFFFFFE
(4 294 967 294)
or 0x00000000 (0)

Address which identifies that the source or
the destination of a packet is an
unspecified sink on the network
With current tree routing, only nodes may
use this as the destination address when
sending packets. These addresses are
reserved as Wirepas reserved addresses
and cannot be used as addresses for any
nodes in the network.

Multicast

0x80000000-
0x80FFFFFF
(2 147 483 648 –
 2 164 260 863)

Packet is delivered to the group of nodes.
Group may contain 0 or more nodes. Each
node may belong to 0 or more groups.
The lowest 24 bits contain the actual
group address and highest bit is an
indication that message is sent to that
group.

12
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

2.2. Data Services (DSAP)

The data services are used to transmit/receive application data via the network.

2.2.1. DSAP-DATA_TX Service

The DSAP-DATA_TX service is used to transport APDUs from the application to the stack. The

stack transmits the APDUs to other node(s) on the network, according to set parameters. The

DSAP-DATA_TX service includes the following primitives:

• DSAP-DATA_TX.request

• DSAP-DATA_TX.confirm

• DSAP-DATA_TX_TT.request

• DSAP-DATA_TX_TT.confirm

• DSAP-DATA_TX.indication

• DSAP-DATA_TX.response (All response primitives have the same format, see

section 2.5)

2.2.1.1. DSAP-DATA_TX.request

The DSAP-DATA_TX.request is issued by the application when it wants to send data. The DSAP-

DATA.request frame is depicted in Figure 3.

Figure 3. DSAP-DATA_TX.request frame

The DSAP-DATA_TX.request frame fields (solid border in the figure) are explained in Table 5.

Table 5. DSAP-DATA_TX.request frame fields

Field Name Size Valid Values Description

PDUID 2 0 – 65534

PDU identifier decided by the application
The PDU ID can be used to keep track
of APDUs processed by the stack as the
same PDU ID is contained in a
corresponding DSAP-
DATA_TX.indication sent by the stack to
the application. E.g. the application can
keep the PDU in its own buffers until the
successful transmission is indicated by
the stack in DSAP-DATA_TX.indication.
PDU ID 65535 (0xFFFF) is reserved and
should not be used.
Also see Note 1.

SourceEndpoint 1 0 – 239
Source endpoint number
Also see Note 2.

DestinationAddress 4
0 –
4294967295

Destination node address
Also see Note 3.

DestinationEndpoint 1 0 – 239
Destination endpoint number
Also see Note 2.

Primitive ID Frame ID
Payload

length
PDU ID

Source

endpoint

Destination

address

Destination

endpoint
QoS TX options

APDU

length
APDU CRC

1 octet 1 octet 1 octet 2 octets 1 octet 4 octets 1 octet 1 octet 1 octet 1 octet
1-102

octets
2 octets

13
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Field Name Size Valid Values Description

QoS 1 0 or 1

Quality of service class to be used. The
different values are defined as follows:
0 = Use traffic class 0, i.e. normal priority
1 = Use traffic class 1, i.e. high priority.

TXOptions 1

00xx xxxx
(bitfield,
where x can
be 0 or 1)

The TX options are indicated as a bit
field with individual bits defined as
follows:

Bit 0 = 0: Do not generate DSAP-
DATA_TX.indication
Bit 0 = 1: Generate DSAP-
DATA_TX.indication
Bit 0 is used to register for receiving a
DSAP-DATA_TX.indication after the
PDU has been successfully transmitted
to next hop node or cleared from the
PDU buffers due to timeout or
congestion. Also see Note 1.

Bit 1 = 1, Use unacknowledged CSMA-
CA transmission method
Bit 1 = 0, Use normal transmission
method.
See Note 4.

Bits 2-5: Hop limit. Maximum number of
hops executed for packet to reach the
destination. See Note 5.

Bits 6-7: Reserved
Here, bit 0 is the least significant bit and
bit 7 is the most significant bit.

APDULength 1 1 – 102
The length of the following APDU in
octets

APDU 1 – 102 - Application payload

Note 1: These fields are used only locally for the communication between the application layer

and the stack. They are not actually transmitted on the network. Only 16 requests where

generation of DSAP-DATA_TX.indication is active are allowed at the same time.

Without generation of the indication, there is room for plenty of more requests

simultaneously.

Note 2: The endpoint numbers are used to distinguish different application channels. E.g. if the

device has multiple sensors it could use different endpoint numbers for APDUs

containing data from different sensors or different endpoint numbers for applications

with different functionality.

 Endpoints 240 – 255 are reserved for Wirepas Mesh stack internal use.

Note 3: Note that a broadcast will only be transmitted (downlink) to the nodes directly under the

sink’s routing tree. To reach all nodes on the network, it is necessary to send the

broadcast from all sinks. All devices can send traffic to themselves (loopback) by using

their own address as destination.

Note 4: The unacknowledged CSMA-CA transmission method can be used in a mixed network

(i.e. network consisting of both CSMA-CA and TDMA devices) by CSMA-CA device

14
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

originated packets transmission only to CSMA-CA devices. The purpose of this method

is to avoid a performance bottleneck by NOT transmitting to TDMA devices. Also, if

used with sink-originated transmissions (by CSMA-CA mode sinks), the throughput is

better when compared to a 'normal' transmission, however there is some penalty in

reliability (due to unacknowledged nature of transmission).

Note 5: Hop limit sets the upper value to the number of hops executed for packet to reach the

destination. By using hop limiting, it is possible to limit the distance how far the packet

is transmitted to and avoiding causing unnecessary traffic to network. Hop count value

of 0 is used to disable the hop limiting. Hop limiting value does not have any impact

when using AnySink address as destination node address but is discarded.

2.2.1.2. DSAP-DATA_TX.confirm

The DSAP-DATA_TX.confirm is issued by the stack as a response to the DSAP-

DATA_TX.request. The DSAP-DATA_TX.confirm frame is depicted in Figure 4.

Figure 4. DSAP-DATA_TX.confirm frame

The DSAP-DATA_TX.confirm frame fields (solid border in the figure) are explained in

Table 6.

Primitive

ID
Frame ID

Payload

length
PDU ID Result Capacity CRC

1 octet 1 octet 1 octet 2 octets 1 octet 1 octet 2 octets

15
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Table 6. DSAP-DATA_TX.confirm frame fields

Field Name Size Valid Values Description

PDUID 2 0 – 65534

PDU identifier set by the application in the
corresponding DSAP-DATA_TX.request
This field is only used for data TX requests where an
indication is requested, i.e. TX options bit 0 is set
(see field TXOptions in section 2.2.1.1). If no
indication is requested, the value of this field is
undefined.

Result 1 0 – 10

The return result of the corresponding DSAP-
DATA_TX.request. The different values are defined
as follows:
0 = Success: PDU accepted for transmission
1 = Failure: Stack is stopped
2 = Failure: Invalid QoS-parameter
3 = Failure: Invalid TX options-parameter
4 = Failure: Out of memory
5 = Failure: Unknown destination address
6 = Failure: Invalid APDU length-parameter
7 = Failure: Cannot send indication
8 = Failure: PDUID is already in use
9 = Failure: Invalid src/dest end-point
10 = Failure: Access denied (see section 2.4.4.21)

Capacity 1 -
Number of PDUs that still can fit in the PDU buffer
(see section 2.3.16.3 for details)

2.2.1.3. DSAP-DATA_TX_TT.request

The DSAP-DATA_TX_TT.request is identical to the DSAP-DATA_TX.request, except there is one

extra field for setting buffering delay to an initial no-zero value. The DSAP-DATA.request frame

is depicted in Figure 5.

Figure 5. DSAP-DATA_TX_TT.request frame

The DSAP-DATA_TX_TT.request frame fields (solid border in the figure) are explained in Table

7.

Table 7. DSAP-DATA_TX_TT.request frame fields

Field Name Size Valid Values Description

PDUID 2 0 – 65534 See description in chapter 2.2.1.1.

SourceEndpoint 1 0 – 239 See description in chapter 2.2.1.1.

DestinationAddress 4 0 – 4294967295 See description in chapter 2.2.1.1.

DestinationEndpoint 1 0 – 239 See description in chapter 2.2.1.1.

QoS 1 0 or 1 See description in chapter 2.2.1.1.

TXOptions 1
00xx xxxx
(bitfield, where x
can be 0 or 1)

See description in chapter 2.2.1.1.

BufferingDelay 4 0 – 4 294 967 295

The time the PDU has been in the
application buffers before it was transmitted
over API. Expressed in units of 1/128th of a
second.

APDULength 1 1 – 102 See description in chapter 2.2.1.1.

Primitive ID Frame ID
Payload

length
PDU ID

Source

endpoint

Destination

address

Destination

endpoint
QoS TX options

Buffering

delay

APDU

length
APDU CRC

1 octet 1 octet 1 octet 2 octets 1 octet 4 octets 1 octet 1 octet 1 octet 4 octets 1 octet
1-102

octets
2 octets

16
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Field Name Size Valid Values Description

APDU 1 – 102 - See description in chapter 2.2.1.1.

2.2.1.4. DSAP-DATA_TX_TT.confirm

The DSAP-DATA_TX_TT.confirm is issued by the stack as a response to the DSAP-

DATA_TX_TT.request. It is identical to DSAP-DATA_TX.confirm, explained in section 2.2.1.2.

2.2.1.5. DSAP-DATA_TX.indication

The DSAP-DATA_TX.indication is issued by the stack as an asynchronous reply for the DSAP-

DATA_TX.request after the APDU of the corresponding DSAP-DATA_TX.request is successfully

transmitted to next hop node or cleared from stack buffers due to timeout or congestion. The

DSAP-DATA_TX.indication is sent only if the application registers it in the corresponding DSAP-

DATA_TX.request’s TX options parameter. The DSAP-DATA_TX.indication frame is depicted in

Figure 6.

Figure 6. DSAP-DATA_TX.indication frame

The DSAP-DATA_TX.indication frame fields (solid border in the figure) are explained in Table 8.

Table 8. DSAP-DATA_TX.indication frame fields

Field Name Size Valid Values Description

IndicationStatus 1 0 or 1
0 = No other indications queued
1 = More indications queued

PDUID 2 0 – 65534
PDU identifier set by the application in
the corresponding DSAP-
DATA_TX.request

SourceEndpoint 1 0 – 239 Source endpoint number

DestinationAddress 4 0 – 4294967295
Destination node address set by the
application in the corresponding DSAP-
DATA_TX.request

DestinationEndpoint 1 0 – 239 Destination endpoint number

BufferingDelay 4 -

The time the PDU has been in the stack
buffers before it was transmitted.
Reported in units of BufferingDelay /
128 seconds i.e. BufferingDelay *
7.8125 milliseconds.

Result 1 0 or 1

The return result of the corresponding
DSAP-DATA_TX.request. The different
values are defined as follows:
0 = Success: PDU was successfully
sent
1 = Failure: PDU was discarded

2.2.2. DSAP-DATA_RX Service

The DSAP-DATA_RX service supports the transport of received APDUs from the stack to the

application layer. The DSAP-DATA_RX service includes the following primitives:

• DSAP-DATA_RX.indication

Primitive ID Frame ID
Payload

length

Indication

status
PDU ID

Source

endpoint

Destination

address

Destination

endpoint

Buffering

delay
Result CRC

1 octet 1 octet 1 octet 1 octet 2 octets 1 octet 4 octets 1 octet 4 octets 1 octet 2 octets

17
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

• DSAP-DATA_RX.response (All response primitives have the same format, see

section 2.5)

2.2.2.1. DSAP-DATA_RX.indication

The DSAP-DATA_RX.indication is issued by the stack when it receives data from the network

destined to this node. The DSAP-DATA_RX.indication frame is depicted in Figure 7.

Figure 7. DSAP-DATA_RX.indication frame

The DSAP-DATA_RX.indication frame fields (thick border in the figure) are explained in Table 9.

Table 9. DSAP-DATA_RX.indication frame fields

Field Name Size Valid Values Description

IndicationStatus 1 0 or 1
0 = No other indications queued
1 = More indications queued

SourceAddress 4
0 –
4294967295

Source node address

SourceEndpoint 1 0 – 239 Source endpoint number

DestinationAddress 4
0 –
4294967295

Destination node address

DestinationEndpoint 1 0 – 239 Destination endpoint number

QoS + Hop count 1 0 – 255

Bits 0-1 (LSB): Quality of service class
to be used. The different values are
defined as follows:
0 = Use traffic class 0, i.e. normal
priority
1 = Use traffic class 1, i.e. high priority

Bits 2-7: Hop count: how many hops
were used to transmit the data to the
destination (1-n hops)

For example, value 0x29 (0b00101001)
tells that high priority data was received
and ten hops were used to transmit data
to the destination.

TravelTime 4 -

Travel time of the PDU on the network.
Reported in units of TravelTime / 128
seconds i.e. TravelTime * 7.8125
milliseconds.

APDULength 1 -
The length of the following APDU in
octets

APDU 1 – 102 - Application payload

2.3. Management Services (MSAP)

The management services are used to control the stack at run-time, as well as read and write

run-time parameters of the stack.

18
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

2.3.1. INDICATION_POLL Service

For enabling variety of application architectures, the application may poll the stack indications

when it is most convenient. This is enabled by the indication IRQ with MSAP-INDICATION_POLL

service. The MSAP-INDICATION_POLL service includes the following primitives:

• MSAP-INDICATION_POLL.request

• MSAP-INDICATION_POLL.confirm

The MSAP-INDICATION_POLL service is used to query indications from the stack. This

mechanism is used for all indications independent of the service.

The basic flow for receiving indications from the stack goes as follows:

1. The stack asserts the IRQ signal to indicate that it has pending indication(s) that it

wants to deliver to the application. For hardware-specific information on the IRQ

signal, see the appropriate hardware reference manual.

2. The application sends MSAP-INDICATION_POLL.request to query for the

indication(s).

3. The stack responds with MSAP-INDICATION_POLL.confirm to indicate that it will

start sending pending indications.

4. The stack sends a pending indication. The individual indication format depends on

the service that has issued the indication and follows the indication formats specified

in this document.

5. The application sends a response to acknowledge the indication. In the response, the

application also indicates if it wants to receive another pending indication.

6. If the response frame indicated that the application wants to receive another

indication and there are still pending indications: Go to step 4.

The indication exchange stops if a) there are no more pending indications (in which case the stack

de-asserts the IRQ), or b) the application indicates in a response that it does not want to receive

more indications at the moment (in which case pending indications, if there are any, can be

queried later).

Note: If there are no pending indications when the application issues a MSAP-

INDICATION_POLL.request (i.e. the request is issued, but IRQ signal is not asserted), the

stack replies only with MSAP-INDICATION_POLL.confirm and informs that there are no

pending indications at the moment.

2.3.1.1. MSAP-INDICATION_POLL.request

The MSAP-INDICATION_POLL.request is issued by the application layer when it wants to query

stack indications. The MSAP-INDICATION_POLL.request frame is depicted in Figure 8.

Figure 8. MSAP-INDICATION_POLL.request frame

The MSAP-INDICATION_POLL.request frame does not contain any payload.

Primitive

ID
Frame ID

Payload

length
CRC

1 octet 1 octet 1 octet 2 octets

19
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

2.3.1.2. MSAP-INDICATION_POLL.confirm

The MSAP-INDICATION_POLL.confirm is issued by the stack as a response to the MSAP-

INDICATION_POLL.request. The MSAP-INDICATION_POLL.confirm frame is depicted in Figure

9.

Figure 9. MSAP-INDICATION_POLL.confirm frame

The MSAP-INDICATION_POLL.confirm frame fields (solid border in the figure) are explained in

Table 10.

Table 10. MSAP-INDICATION_POLL.confirm frame fields

Field Name Size Valid Values Description

Result 1 0 or 1

The return result of the corresponding MSAP-
INDICATION_POLL.request. The different values
are defined as follows:
1 = Pending indications exist and stack will start
sending the indication(s)
0 = No pending indications

2.3.2. MSAP-STACK_START Service

The stack can be started using the MSAP-STACK_START service. The MSAP-STACK_START

service includes the following primitives:

• MSAP-STACK_START.request

• MSAP-STACK_START.confirm

2.3.2.1. MSAP-STACK_START.request

The MSAP-STACK_START.request issued by the application layer when the stack needs to be

started. The MSAP-STACK_START.request frame is depicted in Figure 10.

Figure 10. MSAP-STACK_START.request frame

The MSAP-STACK_START.request frame fields (solid border in the figure) are explained in

Table 11.

Primitive

ID
Frame ID

Payload

length

Indication

status
CRC

1 octet 1 octet 1 octet 1 octet 2 octets

Primitive

ID
Frame ID

Payload

length

Start

options
CRC

1 octet 1 octet 1 octet 1 octet 2 octets

20
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Table 11. MSAP-STACK_START.request frame fields

Field Name Size Valid Values Description

StartOptions 1
0000 000x
(where x can be 0 or
1)

The stack start options are indicated as a bit
field with individual bits defined as follows:
Bit 0 = 0: Start stack with auto-start disabled,
see Note, below
Bit 0 = 1: Start stack with auto-start enabled
Bit 1: Reserved
Bit 2: Reserved
Bit 3: Reserved
Bit 4: Reserved
Bit 5: Reserved
Bit 6: Reserved
Bit 7: Reserved
, where bit 0 is the least significant bit and bit
7 is the most significant bit.

Note: For more information on the auto-start feature, see section 2.3.12 (MSAP mAutostart-

attribute). The setting in bit 0 is automatically written to the MSAP auto-start attribute.

2.3.2.2. MSAP-STACK_START.confirm

The MSAP-STACK_START.confirm issued by the stack as a response to the MSAP-

STACK_START.request. The MSAP-STACK_START.confirm frame is depicted in Figure 11.

Figure 11. MSAP-STACK_START.confirm frame

The MSAP-STACK_START.confirm frame fields are explained in Table 12.

Table 12. MSAP-STACK_START.confirm frame fields

Field Name Size Valid Values Description

Result 1
000x xxxx
(where x can be
0 or 1)

The return result of the corresponding MSAP-
STACK_START.request. The result is indicated
as a bit field with individual bits defined as follows:
0x00: Success: Stack started
Bit 0 = 1: Failure: Stack remains stopped
Bit 1 = 1: Failure: Network address missing
Bit 2 = 1: Failure: Node address missing
Bit 3 = 1: Failure: Network channel missing
Bit 4 = 1: Failure: Role missing
Bit 5 = 1: Failure: Application configuration data
missing (valid only on sink device)
Bit 6: Reserved
Bit 7 = 1: Failure: Access denied (see section
2.4.4.21)
, where bit 0 is the least significant bit and bit 7 is
the most significant bit.

2.3.3. MSAP-STACK_STOP Service

The stack can be stopped using the MSAP-STACK_STOP service. The MSAP-STACK_STOP

service includes the following primitives:

Primitive

ID
Frame ID

Payload

length
Result CRC

1 octet 1 octet 1 octet 1 octet 2 octets

21
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

• MSAP-STACK_STOP.request

• MSAP-STACK_STOP.confirm

2.3.3.1. MSAP-STACK_STOP.request

The MSAP-STACK_STOP.request is issued by the application layer when the stack needs to be

stopped. Stopping the stack will cause the firmware to reboot. This has the following side effects:

• All buffered data will be lost, including data being routed from other nodes

• If there is a new OTAP scratchpad that has been marked to be processed, the

bootloader will process it, e.g. update the stack firmware (see section 2.3.13)

Note: A successful MSAP-STACK_STOP.request sets the MSAP auto-start attribute to disabled.

For more information on the auto-start feature, see section 2.3.12 (MSAP mAutostart-

attribute).

The MSAP-STACK_STOP.request frame is depicted in Figure 12.

Figure 12. MSAP-STACK_STOP.request frame

The MSAP-STACK_STOP.request frame does not contain any payload.

2.3.3.2. MSAP-STACK_STOP.confirm

The MSAP-STACK_STOP.confirm issued by the stack as a response to the MSAP-

STACK_STOP.request. The MSAP-STACK_STOP.confirm frame is depicted in Figure 13.

Figure 13. MSAP-STACK_STOP.confirm frame

The MSAP-STACK_STOP.confirm frame fields are explained in Table 13.

Table 13. MSAP-STACK_STOP.confirm frame fields

Field Name Size Valid Values Description

Result 1 0, 1 or 128

The return result of the corresponding MSAP-
STACK_STOP.request. The different values are
defined as follows:
0 = Success: Stack stopped
1 = Failure: Stack already stopped
128 = Failure: Access denied (see section 2.4.4.21)

Note: After device has sent the MSAP-STACK_STOP.confirm message, device is rebooted. This

takes a while. During the rebooting, the device does not respond to messages. One

example of how to detect when the rebooting has been done is to issue read-only

commands to the device and when it responses to such, the rebooting has been performed.

For example, use MSAP-ATTRIBUTE_READ command (see section 2.3.9) to query

attribute mStackStatus (see section 2.3.12).

Primitive

ID
Frame ID

Payload

length
CRC

1 octet 1 octet 1 octet 2 octets

Primitive

ID
Frame ID

Payload

length
Result CRC

1 octet 1 octet 1 octet 1 octet 2 octets

22
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

2.3.4. MSAP-STACK_STATE Service

The MSAP-STACK_STATE service informs the stack state at boot. MSAP-STACK_STATE

service includes the following primitives:

• MSAP-STACK_STATE.indication

• MSAP-STACK_STATE.response (All response primitives have the same format, see

section 2.5)

2.3.4.1. MSAP-STACK_STATE.indication

The MSAP-STACK_STATE.indication is issued by the stack when it has booted. The MSAP-

STACK_STATE.indication frame is depicted in Figure 14.

Figure 14. MSAP-STACK_STATE.indication frame

The MSAP-STACK_STATE.indication frame fields are explained in Table 14.

Table 14. MSAP-STACK_STATE.indication frame fields

Field Name Size Valid Values Description

IndicationStatus 1 0 or 1
0 = No other indications queued
1 = More indications queued

Status 1
0xxx xxxx
(where x can
be 0 or 1)

The stack status is indicated as a bit field with
individual bits defined as follows:
Bit 0 = 0: Stack running, see Note below
Bit 0 = 1: Stack stopped
Bit 1 = 0: Network address set
Bit 1 = 1: Network address missing
Bit 2 = 0: Node address set
Bit 2 = 1: Node address missing
Bit 3 = 0: Network channel set
Bit 3 = 1: Network channel missing
Bit 4 = 0: Role set
Bit 4 = 1: Role missing
Bit 5 = 0: Application configuration data valid
Bit 5 = 1: Application configuration data
missing (valid only on sink device)
Bit 7: Reserved
, where bit 0 is the least significant bit and bit 7
is the most significant bit.

Note: If the stack sends an MSAP-STACK_STATE.indication where the status bit 0 = 0, it means

that the stack has auto-started. If the status bit 0 = 1, it means that auto-start is disabled.

For more information on the auto-start feature, see section 2.3.12 (MSAP auto-start

attribute).

2.3.5. MSAP-APP_CONFIG_DATA_WRITE Service

The MSAP-APP_CONFIG_DATA_WRITE service can be used for two things:

1. Configure application-specific parameters (application configuration data) to the

application running in the nodes (via the network)

Primitive

ID
Frame ID

Payload

length

Indication

status
Status CRC

1 octet 1 octet 1 octet 1 octet 1 octet 2 octets

23
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

2. Configure transmission interval of the stack diagnostic data

The application configuration data is persistent global data for the whole network. The data format

can be decided by the application. Application configuration data can be set by the sinks’

application after which it is disseminated to the whole network and stored at every node. It can

include e.g. application parameters, such as measurement interval. The service makes it possible

to set the data, after which every new node joining the network receives the data from its

neighbors without the need for end-to-end polling. Furthermore, new configurations can be set

and updated to the network on the run.

The MSAP-APP_CONFIG_DATA_WRITE service includes the following primitives:

• MSAP-APP_CONFIG_DATA_WRITE.request

• MSAP-APP_CONFIG_DATA_WRITE.confirm

Note 1: The MSAP-APP_CONFIG_DATA_WRITE service can only be used in sink role.

Note 2: In a network including multiple sinks, the same configuration data should be set to all

sinks so that it can be guaranteed to disseminate to every node.

Note 3: Application configuration data is stored in permanent memory similarly to the persistent

attributes. To avoid memory wearing, do not write new values too often (e.g. more often

than once per 30 minutes).

2.3.5.1. MSAP-APP_CONFIG_DATA_WRITE.request

The MSAP-APP_CONFIG_DATA_WRITE.request is issued by the application when it wants to

set or change the network configuration data contents. The MSAP-

APP_CONFIG_DATA_WRITE.request frame is depicted in Figure 15.

Figure 15. MSAP-APP_CONFIG_DATA_WRITE.request frame

The MSAP-APP_CONFIG_DATA_WRITE.request frame fields are explained in Table 15.

Table 15. MSAP-APP_CONFIG_DATA_WRITE.request frame fields

Field Name Size Valid Values Description

SequenceNumber 1
0 – 254, default
value is 0

Sequence number for filtering old and
already received application
configuration data packets at the nodes.
The sequence number must be
increment by 1 every time new
configuration is written, i.e. new
diagnostic data interval and/or new
application configuration data is
updated. See section 2.6 for details.
A sequence number that is the current
value of existing application
configuration data is invalid. A value of
255 is invalid. Therefore, after value of
254, the next valid value is 0.

Primitive ID Frame ID
Payload

length

Sequence

number

Diagnostic

data

interval

App config

data
CRC

1 octet 1 octet 1 octet 1 octet 2 octets X octets 2 octets

24
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Field Name Size Valid Values Description

DiagnosticDataInterval 2

0, 30, 60, 120,
300, 600, 1800,
default value is
0

Diagnostic data transmission interval in
seconds, i.e. how often the nodes on the
network should send diagnostic PDUs.
If the value is 0, diagnostic data
transmission is disabled.

AppConfigData X
Raw hex data,
default value is
filled with 0x00

Application configuration data. The
format can be decided by the
application.
Size of the field is defined by CSAP
attribute cAppConfigDataSize (see
section 2.4.4.16)

Note: It is recommended that the configuration data is not written too often, as new configuration

data is always written to the non-volatile memory of the sink and disseminated to the

network. This can cause unnecessary wearing of the memory with devices that need to

use the program memory to store persistent variables and unnecessary load to the network.

2.3.5.2. Reserved values in AppConfigData

The first byte of the AppConfigData has some reserved values. Do not use these values as first

byte of your AppConfigData.

 Table 16. Reserved values of the first byte of AppConfigData

First byte value Description

0x02
This value is reserved for configuring IPv6 functionality in the Wirepas
network. If the network does not support IPv6 functionality, this value
can be used freely.

2.3.5.3. MSAP-APP_CONFIG_DATA_WRITE.confirm

The MSAP-APP_CONFIG_DATA_WRITE.confirm is issued by the stack in response to the

MSAP-APP_CONFIG_DATA_WRITE.request. The MSAP-

APP_CONFIG_DATA_WRITE.confirm frame is depicted in Figure 16.

Figure 16. MSAP-APP_CONFIG_DATA_WRITE.confirm frame

The MSAP-APP_CONFIG_DATA_WRITE.confirm frame fields are explained in Table 17.

Table 17. MSAP-APP_CONFIG_DATA_WRITE.confirm frame fields

Field Name Size Valid Values Description

Result 1 0 – 4

The return result of the corresponding MSAP-
APP_CONFIG_DATA_WRITE.request. The different
values are defined as follows:
0 = Success: New configuration written to sink’s
non-volatile memory and scheduled for transmission
1 = Failure: The node is not a sink
2 = Failure: Invalid DiagnosticDataInterval value
3 = Failure: Invalid SequenceNumber value
4 = Failure: Access denied (see section 2.4.4.21)

Primitive

ID
Frame ID

Payload

length
Result CRC

1 octet 1 octet 1 octet 1 octet 2 octets

25
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

2.3.6. MSAP-APP_CONFIG_DATA_READ Service

The MSAP-APP_CONFIG_DATA_READ service can be used to read the network-wide

application configuration data. The MSAP-APP_CONFIG_DATA_READ service includes the

following primitives:

• MSAP-APP_CONFIG_DATA_READ.request

• MSAP-APP_CONFIG_DATA_READ.confirm

For sinks, the service returns the configuration data last written to the stack using the MSAP-

APP_CONFIG_DATA_WRITE service. For nodes, the service returns the configuration data that

was last received from neighboring nodes.

2.3.6.1. MSAP-APP_CONFIG_DATA_READ.request

The MSAP-APP_CONFIG_DATA_READ.request is issued by the application when it wants to

read the network configuration data contents. The MSAP-APP_CONFIG_DATA_READ.request

frame is depicted in Figure 17.

Figure 17. MSAP-APP_CONFIG_DATA_READ.request frame

The MSAP-APP_CONFIG_DATA_READ.request frame does not contain any payload.

2.3.6.2. MSAP-APP_CONFIG_DATA_READ.confirm

The MSAP-APP_CONFIG_DATA_READ.confirm is issued by the stack in response to the MSAP-

APP_CONFIG_DATA_READ.request. The MSAP-APP_CONFIG_DATA_READ.confirm frame is

depicted in Figure 18.

Figure 18. MSAP-APP_CONFIG_DATA_READ.confirm frame

The MSAP-APP_CONFIG_DATA_READ.confirm frame fields are explained in Table 18.

Primitive

ID
Frame ID

Payload

length
CRC

1 octet 1 octet 1 octet 2 octets

Primitive ID Frame ID
Payload

length
Result

Sequence

number

Diagnostic

data

interval

App config

data
CRC

1 octet 1 octet 1 octet 1 octet 1 octet 2 octets X octets 2 octets

26
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Table 18. MSAP-APP_CONFIG_DATA_READ.confirm frame fields

Field Name Size Valid Values Description

Result 1 0 – 2

Return result for the corresponding
MSAP-
APP_CONFIG_DATA_READ.request.
The different values are defined as
follows:
0 = Success: Configuration received/set
1 = Failure: No configuration
received/set
2 = Failure: Access denied (see section
2.4.4.21)
When used with nodes, indicates
whether configuration has been received
from neighbors. When used with sinks,
indicates whether configuration has
already been set (by using MSAP-
APP_CONFIG_DATA_WRITE service).

SequenceNumber 1 0 – 254

Sequence number for filtering old and
already received application
configuration data packets at the nodes.
This parameter can be used by the
application to decide if the configuration
data has been updated. See section 2.6
for details.
The returned value is never 255.

DiagnosticDataInterval 2
0, 30, 60, 120,
300, 600, 1800

Diagnostic data transmission interval in
seconds, i.e. how often the stack should
send diagnostic PDUs
If the value is 0, diagnostic data
transmission is disabled.

AppConfigData X -

Application configuration data. The
format can be decided by the
application.
Size of the field is defined by CSAP
attribute cAppConfigDataSize (see
section 2.4.4.16)

2.3.7. MSAP-APP_CONFIG_DATA_RX Service

The MSAP-APP_CONFIG_DATA_RX service provides support for asynchronous sending of

received configuration data to the application when new data is received from the network. The

MSAP-APP_CONFIG_DATA_RX service includes the following primitives:

• MSAP-APP_CONFIG_DATA_RX.indication

• MSAP-APP_CONFIG_DATA_RX.response (All response primitives have the same

format, see section 2.5)

Note: The MSAP-APP_CONFIG_DATA_RX service is available only in node role. With sinks the

configuration is set with MSAP-APP_CONFIG_DATA_WRITE service as described above.

2.3.7.1. MSAP-APP_CONFIG_DATA_RX.indication

The MSAP-APP_CONFIG_DATA_RX.indication is issued by the stack when it receives new

configuration data from its neighbors. The MSAP-APP_CONFIG_DATA_RX.indication frame is

27
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

similar to MSAP-APP_CONFIG_DATA_read.confirm frame (see section 2.3.6.2). Only exception

is that the Result-parameter is replaced with the indicationStatus field (see section 2.3.1.2).

Figure 19. MSAP-APP_CONFIG_DATA_RX.indication frame

2.3.8. MSAP-ATTRIBUTE_WRITE Service

The MSAP-ATTRIBUTE_WRITE service can be used by the application to write run-time

management attributes of the stack. The MSAP-ATTRIBUTE_WRITE service includes the

following primitives:

• MSAP-ATTRIBUTE_WRITE.request

• MSAP-ATTRIBUTE_WRITE.confirm

The MSAP attributes are specified in section 2.3.14.

2.3.8.1. MSAP-ATTRIBUTE_WRITE.request

The MSAP-ATTRIBUTE_WRITE.request is issued by the application when it wants to set or

change the MSAP attributes. The MSAP-ATTRIBUTE_WRITE.request frame is depicted in Figure

20.

Figure 20. MSAP-ATTRIBUTE_WRITE.request frame

The MSAP-ATTRIBUTE_WRITE.request frame fields are explained in Table 19.

Table 19. MSAP-ATTRIBUTE_WRITE.request frame fields

Field Name Size Valid Values Description

AttributeID 2

Depends on the
attribute. See
section 2.3.14

The ID of the attribute that is written

AttributeLength 1
The length (in octets) of the attribute that is
written

AttributeValue 1 – 16
The value that is written to the attribute
specified by the set attribute ID

2.3.8.2. MSAP-ATTRIBUTE_WRITE.confirm

The MSAP-ATTRIBUTE_WRITE.confirm is issued by the stack in response to the MSAP-

ATTRIBUTE_WRITE.request. The MSAP-ATTRIBUTE_WRITE.confirm frame is depicted in

Figure 21.

Primitive ID Frame ID
Payload

length
Result

Sequence

number

Diagnostic

data

interval

App config

data
CRC

1 octet 1 octet 1 octet 1 octet 1 octet 2 octets X octets 2 octets

Primitive ID Frame ID
Payload

length
Attribute ID

Attribute

Length

Attribute

value
CRC

1 octet 1 octet 1 octet 2 octets 1 octet 1-16 octets 2 octets

28
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Figure 21. MSAP-ATTRIBUTE_WRITE.confirm frame

The MSAP-ATTRIBUTE_WRITE.confirm frame fields are explained in

Table 20.

Table 20. MSAP-ATTRIBUTE_WRITE.confirm frame fields

Field Name Size Valid Values Description

Result 1 0 – 6

The return result of the corresponding MSAP-
ATTRIBUTE_WRITE.request. The different values
are defined as follows:
0 = Success
1 = Failure: Unsupported attribute ID
2 = Failure: Stack in invalid state to write attribute
3 = Failure: Invalid attribute length
4 = Failure: Invalid attribute value
5 = Reserved
6 = Failure: Access denied (e.g. attribute read
prevented by feature lock bits)

2.3.9. MSAP-ATTRIBUTE_READ Service

The MSAP-ATTRIBUTE_READ service can be used by the application layer to read run-time

management attributes from the stack. The MSAP-ATTRIBUTE_READ service includes the

following primitives:

• MSAP-ATTRIBUTE_READ.request

• MSAP-ATTRIBUTE_READ.confirm

2.3.9.1. MSAP-ATTRIBUTE_READ.request

The MSAP-ATTRIBUTE_READ.request is issued by the application when it wants to read the

MSAP attributes. The MSAP-ATTRIBUTE_READ.request frame is depicted in Figure 22.

Figure 22. MSAP-ATTRIBUTE_READ.request frame

The MSAP-ATTRIBUTE_READ.request frame fields are explained in Table 21.

Table 21. MSAP-ATTRIBUTE_READ.request frame fields

Field Name Size Valid Values Description

AttributeID 2
Depends on the attribute.
See section 2.3.14

The ID of the attribute that is read

Primitive

ID
Frame ID

Payload

length
Result CRC

1 octet 1 octet 1 octet 1 octet 2 octets

Primitive

ID
Frame ID

Payload

length

Attribute

ID
CRC

1 octet 1 octet 1 octet 2 octets 2 octets

29
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

2.3.9.2. MSAP-ATTRIBUTE_READ.confirm

The MSAP- ATTRIBUTE_READ.confirm is issued by the stack in response to the MSAP-

ATTRIBUTE_READ.request. The MSAP-ATTRIBUTE_READ.confirm frame is depicted in Figure

23.

Figure 23. MSAP-ATTRIBUTE_READ.confirm frame

The MSAP-ATTRIBUTE_READ.confirm frame fields are explained in Table 22.

Table 22. MSAP-ATTRIBUTE_READ.confirm frame fields

Field Name Size Valid Values Description

Result 1 0 – 6

The return result of the corresponding MSAP-
ATTRIBUTE_READ.request. The different
values are defined as follows:
0 = Success
1 = Failure: Unsupported attribute ID
2 = Failure: Stack in invalid state to read
attribute
4 = Failure: Invalid attribute value or attribute
value not yet set
5 = Failure: Write-only attribute (e.g. the
encryption and authentication keys)
6 = Failure: Access denied (e.g. attribute read
prevented by feature lock bits)

AttributeID 2

Depends on
the attribute.
See section
2.3.14.

The ID of the attribute that is read

AttributeLength 1
The length (in octets) of the attribute that is
read

AttributeValue 1 – 16
The value of the read attribute specified by the
set attribute ID. This value of the attribute is
only present if Result is 0 (Success).

2.3.10. MSAP-GET_NBORS Service

This service can be used to tell the status of a node’s neighbors. This information may be used

for various purposes, for example to estimate where a node is located.

2.3.10.1. MSAP-GET_NBORS.request

MSAP-GET_NBORS.request is issued by the application layer to query information about

neighboring nodes. The MSAP-GET_NBORS.request frame is depicted in Figure 24. It contains

no payload.

Primitive ID Frame ID
Payload

length
Result Attribute ID

Attribute

length

Attribute

value
CRC

1 octet 1 octet 1 octet 1 octet 2 octets 1 octet 1-16 octets 2 octets

30
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Figure 24. MSAP-GET_NBORS.request frame

2.3.10.2. MSAP-GET_NBORS.confirm

MSAP-GET_NBORS.confirm is issued by the stack as a response to the MSAP-

GET_NBORS.request. The MSAP-GET_NBORS.confirm frame is depicted in Figure 25 and

Figure 26.

Information for a maximum of eight neighbors is contained within one MSAP-

GET_NBORS.confirm frame. The frame size does not change. If number of neighbors is less than

eight, remaining data in the frame is undefined. If access is denied (see section 2.4.4.21) a block

of zeros is returned.

Figure 25. MSAP-GET_NBORS.confirm frame

The neighbor info frame contains information for a maximum of eight neighbors. This information

is depicted in Figure 26.

Figure 26. MSAP-GET_NBORS.confirm neighbor info

The MSAP-GET_NBORS.confirm frame fields are explained in Table 23.

Primitive ID Frame ID
Payload

length
CRC

1 octet 1 octet 1 octet 2 octets

Primitive ID Frame ID
Payload

length

Number of

neighbors

Neighbor

info
CRC

1 octet 1 octet 1 octet 1 octet 13 octets 2 octets

x 8 times

Neighbor

address

Link

reliability

Normalized

RSSI
Cost Channel

Neighbor

type
TX Power RX Power Last update

4 octets 1 octet 1 octet 1 octet 1 octet 1 octet 1 octet 1 octet 2 octets

31
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Table 23. MSAP-GET_NBORS.confirm frame fields

Field Name Size Valid Values Description

NumberOfNeighbors 1 0 – 8
Number of neighbors’ information
returned. 0 if there are no neighbors.

NeighborAddress 4 0 – 4294967295 Address of the neighbor node

LinkReliability 1 0 – 255
Link reliability to the neighboring node.
Scaled so that 0 = 0 %, 255 = 100 %

NormalizedRSSI 1 0 – 255

Received signal strength,
compensated with transmission power.
Larger value means better the signal.
0: No signal
1: Signal heard barely
>50: Good signal

Cost 1 1 – 255
Route cost to the sink via this
neighbor. Value 255 indicates that a
neighbor has no route to a sink.

Channel 1
1 – CSAP attribute
cChannelLimits

Radio channel used by the neighbor

NeighborType 1 0 – 2

Type of neighbor
0: Neighbor is next hop cluster, i.e.
used as a route to sink
1: Neighbor is a member of this node
2: Neighbor is a cluster from network
scan

TxPower 1 0 – X

Power level used for transmission
0: Lowest power
X: Highest power (depending on the
stack profile)

RxPower 1 0 – X

Received power level
0: Lowest power
X: Highest power (depending on the
stack profile)

LastUpdate 2 0 – 65535
Amount of seconds since these values
were last updated

2.3.11. MSAP-SCAN_NBORS Service

This service can be used by the application to get fresh information about neighbors. Application

can trigger to measurement all neighbors and once the measurement is done, application is

informed it over API. The MSAP-SCAN_NBORS service includes the following primitives:

• MSAP-SCAN_NBORS.request

• MSAP-SCAN_NBORS.confirm

• MSAP-SCAN_NBORS.indication

• MSAP-SCAN_NBORS.response (All response primitives have the same format, see

section 2.5)

2.3.11.1. MSAP-SCAN_NBORS.request

MSAP-SCAN_NBORS.request is issued by the application when it starts to measurement all

neighbors. The MSAP-SCAN_NBORS.request frame is depicted in Figure 24. It contains no

payload.

32
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Figure 27. MSAP-SCAN_NBORS.request frame

2.3.11.2. MSAP-SCAN_NBORS.confirm

This confirm tells result which is always success. After application has asked to scan neighbors

so stack code use signal to handle it.

Figure 28. MSAP-SCAN_NBORS.confirm frame

The MSAP-SCAN_NBORS.confirm frame fields are explained in following table.

Table 24. MSAP_SCAN_NBORS.confirm frame fields

Field
Name

Size Valid Values Description

Result 1 0 – 2

The return result of the corresponding MSAP-
SCAN_NBORS.confirm.
0 = Success
1 = Failure: Stack in invalid state, i.e. not running
2 = Failure: Access denied (see section 2.4.4.21)

2.3.11.3. MSAP-SCAN_NBORS.indication

The MSAP-SCAN_NBORS.indication is issued by the stack as an asynchronous reply for the

MSAP-SCAN_NBORS.request after to scan neighbors is finished. The MSAP-

SCAN_NBORS.indication frame is depicted in Figure 29.

Figure 29. MSAP-SCAN_NBORS.indication frame

The MSAP-SCAN_NBORS.indication frame fields are explained in following table.

Table 25. MSAP-SCAN_NBORS.indication frame fields

Field Name Size Valid Values Description

IndicationStatus 1 0 or 1
0 = No other indications queued
1 = More indications queued

ScanReady 1 1 1 = Scan is done

2.3.12. MSAP-SINK_COST Service

This service can be used to inform the sink that the backend communication has problems. In

order to keep the entire network operational, other nodes can be forced to use other sinks with

working backend communication.

Primitive ID Frame ID
Payload

length
CRC

1 octet 1 octet 1 octet 2 octets

Primitive ID Frame ID
Payload

length
Result CRC

1 octet 1 octet 1 octet 1 octet 2 octets

Primitive ID Frame ID
Payload

length

Indication

status
Scan ready CRC

1 octet 1 octet 1 octet 1 octet 1 octet 2 octets

33
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

2.3.12.1. MSAP-SINK_COST_WRITE.request

This command shall set the sink cost to new value. The higher the cost value, more this sink shall

be avoided.

Figure 30: MSAP-SINK_COST_WRITE.request frame

The MSAP-ATTRIBUTE_WRITE.request frame fields are explained in following table.

Table 26. MSAP-ATTRIBUTE_WRITE.confirm frame fields

Field Name Size Valid Values Description

Cost 1 0 – 254
Value of 0 means that connection is good and no
additional penalty is sent to sink usage.
Value of 254 includes maximum penalty

2.3.12.2. MSAP-SINK_COST_WRITE.confirm

This response tells whether writing of the penalty is successful or not.

Figure 31: MSAP-SINK_COST_WRITE.confirm frame

The MSAP-SINK_COST_WRITE.confirm frame fields are explained in following table.

Table 27. MSAP SINK_COST_WRITE.confirm frame fields

Field Name Size Valid Values Description

Result 1 0 – 2

The return result of the corresponding MSAP-
ATTRIBUTE_WRITE.request. The different values
are defined as follows:
0 = Success
1 = Failure: Device is not a sink
2 = Failure: Access denied (see section 2.4.4.21)

2.3.12.3. MSAP-SINK_COST_READ.request

This command is used to query the currently set additional penalty for the sink usage.

Figure 32: MSAP-SINK_COST_READ.request frame

2.3.12.4. MSAP-SINK_COST_READ.confirm

This response tells currently set additional penalty for the sink usage.

Primitive ID Frame ID
Payload

length
Cost CRC

1 octet 1 octet 1 octet 1 octet 2 octets

Primitive ID Frame ID
Payload

length
Result CRC

1 octet 1 octet 1 octet 1 octet 2 octets

Primitive ID Frame ID
Payload

length
CRC

1 octet 1 octet 1 octet 2 octets

34
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Figure 33: MSAP-SINK_COST_READ.confirm frame

The MSAP-SINK_COST_READ.confirm fields are explained in the following table:

Table 28. MSAP- SINK_COST_READ.confirm frame fields

Field Name Size Valid Values Description

Result 1 0 – 2

The return result of the corresponding MSAP-
ATTRIBUTE_WRITE.request. The different values
are defined as follows:
0 = Success
1 = Failure: Device is not a sink
2 = Failure: Access denied (see section 2.4.4.21)

Cost 1 0 – 254 Additional penalty set for the sink

2.3.13. MSAP-SCRATCHPAD Services

Wirepas Mesh stack support a feature called Over-The-Air-Programming (OTAP). Nodes reserve

any unused non-volatile memory as storage for large bulk data. This area is called the OTAP

scratchpad. OTAP scratchpad can be used to distribute new firmware, applications and other

large pieces of data to all nodes on the network. Nodes keep track of the scratchpad sequence

numbers of their neighbors, and coordinate the distribution of the most recent OTAP scratchpad

to all nodes.

Any node can be used to introduce a new OTAP scratchpad to the network, but the stack must

be in the stopped state while writing the scratchpad data. After the stack is started, the OTAP

transfer will begin (unless disabled for this node).

Note: It is recommended that the scratchpad data is not rewritten too often, as new data is always

written to the non-volatile memory of the sink and distributed to all nodes on the network.

This can cause unnecessary wearing of the non-volatile memory and unnecessary load to

the network.

2.3.13.1. MSAP-SCRATCHPAD_START.request

The MSAP-SCRATCHPAD_START.request is issued by the application when it wants to clear

and rewrite the Scratchpad contents of this node. Any previous scratchpad contents are erased.

Note:

• This request is only valid when the stack is in the stopped state

• The length of the scratchpad in bytes must be divisible by 16

The MSAP-SCRATCHPAD_START.request frame is depicted in Figure 34.

Figure 34. MSAP-SCRATCHPAD_START.request frame

The MSAP-SCRATCHPAD_START.request frame fields are explained in Table 29.

Primitive ID Frame ID
Payload

length
Result Cost CRC

1 octet 1 octet 1 octet 1 octet 1 octet 2 octets

Primitive ID Frame ID
Payload

length

Scratchpad

length in

bytes

Scratchpad

sequence

number

CRC

1 octet 1 octet 1 octet 4 octets 1 octet 2 octets

35
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Table 29. MSAP-SCRATCHPAD_START.request frame fields

Field Name Size Valid Values Description

ScratchpadLengthInBytes 4 96 –

Total number of bytes of OTAP
scratchpad data
The length must be divisible by 16,
or the request will fail.

ScratchpadSequenceNumber 1 0 – 255

Sequence number for filtering old
scratchpad contents at the nodes
The sequence number must be
increment by 1 every time a new
OTAP scratchpad is written. See
section 2.6 for details.
The following sequence numbers
are considered special:

• The sequence number

must be different to the

sequence number of the

scratchpad already present

in the node

• A value of 255 is means

that any scratchpad from

the network will override

this scratchpad

• A value of 0 disables OTAP

for this node

2.3.13.2. MSAP-SCRATCHPAD_START.confirm

The MSAP-SCRATCHPAD_START.confirm is issued by the stack in response to the MSAP-

SCRATCHPAD_START.request. The MSAP-SCRATCHPAD_START.confirm frame is depicted

in Figure 35.

Figure 35. MSAP-SCRATCHPAD_START.confirm frame

The MSAP-SCRATCHPAD_START.confirm frame fields are explained in Table 30.

Table 30. MSAP-SCRATCHPAD_START.confirm frame fields

Field Name Size Valid Values Description

Result 1 0 – 4

The return result of the corresponding MSAP-
SCRATCHPAD_START.request. The different
values are defined as follows:
0 = Success: Scratchpad has been erased and the
node is waiting for new data to be written
1 = Failure: Stack in invalid state, i.e. not stopped
2 = Failure: Invalid ScratchPadLengthInBytes value,
e.g. too big or not divisible by 16
3 = Reserved
4 = Failure: Access denied (see section 2.4.4.21)

Primitive ID Frame ID
Payload

length
Result CRC

1 octet 1 octet 1 octet 1 octet 2 octets

36
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

2.3.13.3. MSAP-SCRATCHPAD_BLOCK.request

Blocks of data for the OTAP scratchpad are written with MSAP-SCRATCHPAD_BLOCK.request.

Number of bytes of data to write can vary, with the following limitations:

• Number of bytes must be a multiple of four

• There may not be gaps in the blocks of data written and data from previously written

blocks may not be overwritten

• The total number of bytes written with consecutive MSAP block requests must be

equal to the number of bytes indicated in the preceding MSAP-

SCRATCHPAD_START.request

MSAP-SCRATCHPAD_BLOCK.request frame is depicted in Figure 36.

Figure 36. MSAP-SCRATCHPAD_BLOCK.request frame

The MSAP-SCRATCHPAD_BLOCK.request frame fields are explained in Table 31.

Table 31. MSAP-SCRATCHPAD_BLOCK.request frame fields

Field Name Size Valid Values Description

StartAddress 4 0 –
Start address of scratchpad data
Overlapping previous data or leaving gaps
is not permitted.

NumberOfBytes 1 1 – 112
Number of bytes of scratchpad data
Must be a multiple of four bytes.

Bytes 1 - 112 - Bytes of scratchpad data

2.3.13.4. MSAP-SCRATCHPAD_BLOCK.confirm

The MSAP-SCRATCHPAD_BLOCK.confirm is issued by the stack in response to the MSAP-

SCRATCHPAD_BLOCK.request. The MSAP-SCRATCHPAD_BLOCK.confirm frame is depicted

in Figure 37.

Figure 37. MSAP-SCRATCHPAD_BLOCK.confirm frame

The MSAP-SCRATCHPAD_BLOCK.confirm frame fields are explained in Table 32.

Primitive ID Frame ID
Payload

length

Start

address

Number of

bytes
Bytes CRC

1 octet 1 octet 1 octet 4 octets 1 octet
1-112

octets
2 octets

Primitive ID Frame ID
Payload

length
Result CRC

1 octet 1 octet 1 octet 1 octet 2 octets

37
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Table 32. MSAP-SCRATCHPAD_BLOCK.confirm frame fields

Field Name Size Valid Values Description

Result 1 0 – 7

The return result of the corresponding MSAP-
SCRATCHPAD_BLOCK.request. The different
values are defined as follows:
0 = Success: Block was accepted
1 = Success: All data received and seems to be OK
2 = Failure: All data received but error in data
3 = Failure: Stack in invalid state, i.e. not stopped
4 = Failure: No scratchpad start request was given
5 = Failure: Start address is invalid
6 = Failure: Number of bytes is invalid
7 = Failure: Does not seem to be a valid scratchpad

Note: Any other result except 0 (block was accepted) means that writing the scratchpad has been

terminated and another MSAP-SCRATCHPAD_START.request must be issued before

another MSAP-SCRATCHPAD_BLOCK.request can be carried out.

2.3.13.5. MSAP-SCRATCHPAD_STATUS.request

MSAP-SCRATCHPAD_STATUS.request is issued by the application layer to query information

about the OTAP scratchpad present in the node, as well as information about the scratchpad that

produced the currently running stack firmware. The MSAP-SCRATCHPAD_STATUS.request

frame is depicted in Figure 38.

Figure 38. MSAP-SCRATCHPAD_STATUS.request frame

The MSAP-SCRATCHPAD_STATUS.request frame does not contain any payload.

2.3.13.6. MSAP-SCRATCHPAD_STATUS.confirm

The MSAP-SCRATCHPAD_STATUS.confirm is issued by the stack in response to the MSAP-

SCRATCHPAD_STATUS.request. There are several kinds of information in the status

confirmation:

• Information about the OTAP scratchpad currently present in the node: its length,

CRC, sequence number, etc.

• Information about the scratchpad that produced the currently running firmware: its

length, CRC, sequence number, etc.

• Information about the currently running stack firmware: version numbers

By keeping track of several identifying pieces of information about the OTAP scratchpad that

produced the currently running stack firmware, it is possible to unambiguously determine how the

stack firmware ended up in the node.

If access is denied (see section 2.4.4.21) a block of zeros is returned. The MSAP-

SCRATCHPAD_STATUS.confirm frame is depicted in Figure 39.

Primitive ID Frame ID
Payload

length
CRC

1 octet 1 octet 1 octet 2 octets

38
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Figure 39. MSAP-SCRATCHPAD_STATUS.confirm frame

The MSAP-SCRATCHPAD_STATUS.confirm frame fields are explained in Table 33.

Table 33. MSAP-SCRATCHPAD_STATUS.confirm frame fields

Field Name Size
Valid
Values

Description

ScratchpadLengthInBytes 4 0 or 96 –

Length of the OTAP
scratchpad present in the
node
Length is 0 if there is no
scratchpad present in the
node

ScratchpadCrc 2
0 –
65535

CRC of the OTAP scratchpad
present in the node
CRC is 0 if there is no
scratchpad present in the
node

ScratchpadSequenceNumber 1 0 – 255

Sequence number of the
OTAP scratchpad present in
the node
Sequence number is 0 if
there is no scratchpad
present in the node

ScratchpadType 1 0 – 2

Type of the OTAP
scratchpad present in the
node. Type can be:
0 = Blank: No valid
scratchpad is present
1 = Present: A valid
scratchpad is present, but
has not been marked to be
processed
2 = Process: A valid
scratchpad is present and
has been marked to be
processed

Primitive ID Frame ID
Payload

length

Scratchpad

length in

bytes

Scratchpad

CRC

Scratchpad

sequence

number

Scratchpad

type

Scratchpad

status

1 octet 1 octet 1 octet 4 octets 2 octets 1 octet 1 octet 1 octet …

Processed

scratchpad

length in

bytes

Processed

scratchpad

CRC

Processed

scratchpad

sequence

number

Firmware

memory

area ID

Firmware

major

version

Firmware

minor

version

Firmware

maintenanc

e version

Firmware

developme

nt version

CRC

4 octets 2 octets 1 octet 4 octets 1 octet 1 octet 1 octet 1 octet 2 octets

39
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Field Name Size
Valid
Values

Description

ScratchpadStatus 1 0 – 255

Status of the OTAP
scratchpad present in the
node:
255 = New: Bootloader has
not yet processed the
scratchpad
0 = Success: Bootloader has
processed the scratchpad
successfully
1 – 254 = Error: Bootloader
encountered an error while
processing the scratchpad
Status is 0 also if there is no
scratchpad present in the
node

ProcessedScratchpadLengthInBytes 4 0 or 96 –

Length of the OTAP
scratchpad that produced the
firmware currently running on
the node

ProcessedScratchpadCrc 2
0 –
65535

CRC of the OTAP scratchpad
that produced the firmware
currently running on the node

ProcessedScratchpadSequenceNumber 1 0 – 255

Sequence number of the
OTAP scratchpad that
produced the firmware
currently running on the node

FirmwareMemoryAreaId 4 Any

Memory area ID of the file in
the OTAP scratchpad that
produced the firmware
currently running on the node
OTAP scratchpad may
contain multiple firmware
images. This value can be
used to determine which one
the bootloader picked.

FirmwareMajorVersion 1 0 – 255
Major version number of
currently running firmware

FirmwareMinorVersion 1 0 – 255
Minor version number of
currently running firmware

FirmwareMaintenanceVersion 1 0 – 255
Maintenance version number
of currently running firmware

FirmwareDevelopmentVersion 1 0 – 255
Development version number
of currently running firmware

2.3.13.7. MSAP-SCRATCHPAD_UPDATE.request

The application issues MSAP-SCRATCHPAD_UPDATE.request to mark the OTAP scratchpad

for processing by the bootloader. The bootloader will process the scratchpad contents on next

reboot. See section 2.3.3.1 on how to reboot the node. Note, that this request is only valid when

the stack is in the stopped state.

MSAP-SCRATCHPAD_UPDATE.request frame is depicted in Figure 40.

40
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Figure 40. MSAP-SCRATCHPAD_UPDATE.request frame

The MSAP-SCRATCHPAD_UPDATE.request frame does not contain any payload.

2.3.13.8. MSAP-SCRATCHPAD_UPDATE.confirm

The MSAP-SCRATCHPAD_UPDATE.confirm is issued by the stack in response to the MSAP-

SCRATCHPAD_UPDATE.request. The MSAP-SCRATCHPAD_UPDATE.confirm frame is

depicted in Figure 41.

Figure 41. MSAP-SCRATCHPAD_UPDATE.confirm frame

The MSAP-SCRATCHPAD_UPDATE.confirm frame fields are explained in Table 34.

Table 34. MSAP-SCRATCHPAD_UPDATE.confirm frame fields

Field Name Size Valid Values Description

Result 1 0 – 3

The return result of the corresponding MSAP-
SCRATCHPAD_UPDATE.request. The different
values are defined as follows:
0 = Success: Bootloader may process the
scratchpad
1 = Failure: Stack in invalid state, i.e. not stopped
2 = Failure: No valid OTAP scratchpad present
3 = Failure: Access denied (see section 2.4.4.21)

2.3.13.9. MSAP-SCRATCHPAD_CLEAR.request

The MSAP-SCRATCHPAD_CLEAR.request is issued by the application when it wants to erase

the OTAP scratchpad. Note, that this request is only valid when the stack is in the stopped state.

MSAP-SCRATCHPAD_CLEAR.request frame is depicted in Figure 42.

Figure 42. MSAP-SCRATCHPAD_CLEAR.request frame

The MSAP-SCRATCHPAD_CLEAR.request frame does not contain any payload.

2.3.13.10. MSAP-SCRATCHPAD_CLEAR.confirm

The MSAP-SCRATCHPAD_CLEAR.confirm is issued by the stack in response to the MSAP-

SCRATCHPAD_CLEAR.request. The MSAP-SCRATCHPAD_CLEAR.confirm frame is depicted

in Figure 43.

Primitive

ID
Frame ID

Payload

length
CRC

1 octet 1 octet 1 octet 2 octets

Primitive ID Frame ID
Payload

length
Result CRC

1 octet 1 octet 1 octet 1 octet 2 octets

Primitive

ID
Frame ID

Payload

length
CRC

1 octet 1 octet 1 octet 2 octets

41
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Figure 43. MSAP-SCRATCHPAD_CLEAR.confirm frame

The MSAP-SCRATCHPAD_CLEAR.confirm frame fields are explained in Table 35.

Table 35. MSAP-SCRATCHPAD_CLEAR.confirm frame fields

Field Name Size Valid Values Description

Result 1 0 – 1

The return result of the corresponding MSAP-
SCRATCHPAD_CLEAR.request. The different
values are defined as follows:
0 = Success: Scratchpad has been erased
1 = Failure: Stack in invalid state, i.e. not stopped
2 = Failure: Access denied (see section 2.4.4.21)

2.3.14. MSAP-NON-ROUTER LONG SLEEP (NRLS) Service

The Non-Router Long Sleep (NRLS) is a service used to sleep Wirepas Mesh stack for time

periods. Once waking-up from the sleep, Wirepas Mesh stack wakes up from the sleep without

system reset. During Wirepas Mesh stack sleep the NRLS services over Dual-MCU API are

available. Before entering to NRLS sleep, Wirepas Mesh stack needs to be running.

In order to use NRLS servicethe cNodeRole (as defined in Table 51) needs to be configured to

stack as 0x03 (non router node). Any other node role settings do not allow to use NRLS

functionality..

The MSAP-NON-ROUTER LONG SLEEP service includes following primitives:

• MSAP-NRLS.request

• MSAP-NRLS.confirm

• MSAP-NRLS_STOP.request

• MSAP-NRLS_STOP.confirm

• MSAP-NRLS_STATE_GET.request

• MSAP-NRLS_STATE_GET.response

• MSAP-NRLS_GOTOSLEEP_INFO.request

• MSAP-NRLS_GOTOSLEEP_INFO.response

Primitive ID Frame ID
Payload

length
Result CRC

1 octet 1 octet 1 octet 1 octet 2 octets

42
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

2.3.14.1. MSAP-NRLS.request

This command shall start the Wirepas Mesh stack sleep for defined time.

Figure 44: MSAP-NRLS.request frame

The MSAP-NRLS.request frame field is explained in following table.

Table 36: MSAP-NRLS.request frame fields

Field Name Size Valid Values Description

NRLS time 4 0 to 0x93A80

0 = Starts Wirepas Mesh stack sleep for
maximum value of 0x93A80 seconds (7
days)

Other values = sleep time in seconds

Appconfig wait time 4 0x04 to 0x258

0 = App config is not awaited before
going to sleep
Other values = Time used to wait for
app config data is received from
network before going to sleep.

Wirepas Mesh stack sleep time is expressed in seconds. Sleep time starts when node gets

disconnected from Mesh network. To disconnect from the network, some time is needed for

signaling before disconnection is completed (the NRLS time does not include this time needed

for signaling before going to sleep). Signaling before actual stack sleep start might take time up

to 30 seconds or more depending of used radio.

If the time when waking up from NRLS sleep and going back to NRLS sleep is very short and app

config is used to signal to the network e.g. overhaul state, good practice is to have Appconfig wait

time long enough (minimum 4 seconds) to make sure that app config data is received before

going to NRLS sleep (see more information in [1]).

2.3.14.2. MSAP-NRLS.confirm

The return result of the corresponding MSAP-NRLS.request is received in MSAP-NRLS.confirm

message.

Figure 45: MSAP-NRLS.confirm frame

Primitive ID Frame ID
Payload

length
Result CRC

1 octet 1 octet 1 octet 1 octet 2 octets

43
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Table 37: MSAP-NRLS.confirm frame fields

Field Name Size Valid Values Description

Result 1 0,1,2,5,6

0 = Success: NRLS started
1 = Failure: Invalid stack state
2 = Failure: Invalid stack role
5 = Failure: Invalid value
6 = Failure: Access denied (see section 2.4.4.21)

2.3.14.3. MSAP-NRLS_STOP.request

This command shall wakeup the Wirepas Mesh stack from NRLS sleep.

Figure 46:MSAP-NRLS_STOP.request

2.3.14.4. MSAP-NRLS_STOP.confirm

The MSAP-NRLS_STOP.confirm issued by the stack as a response to the MSAP-

NRLS_STOP.request. The MSAP-NRLS_STOP.confirm frame is depicted in Figure 52.

Figure 47: MSAP-NRLS_STOP.confirm frame

The MSAP-NRLS_STOP.confirm frame fields are explained in following table.

Table 38: MSAP-NRLS_STOP.confirm frame fields

Field Name Size Valid Values Description

Result 1 0

The return result of the corresponding MSAP-
NRLS_STOP.request. The different values are
defined as follows:
0 = Success: NRLS is stopped and stack is started
1 = Failure: Stack is not in sleep state (stopped) and
NRLS stop cannot be done
6 = Failure: Access denied (see section 2.4.4.21)

Primitive ID Frame ID
Payload

length
CRC

1 octet 1 octet 1 octet 2 octets

Primitive

ID
Frame ID

Payload

length
Result CRC

1 octet 1 octet 1 octet 1 octet 2 octets

44
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

2.3.14.5. MSAP-NRLS_STATE_GET.request

This command shall query NRLS state from the Wirepas Mesh stack.

Figure 48: MSAP-NRLS_STATE_GET.request

2.3.14.6. MSAP-NRLS_STATE_GET.response

The MSAP-NRLS_STATE_GET.response issued by the stack as a response to the MSAP-

NRLS_STATE_GET.request.

Figure 49: MSAP-NRLS_SATE_GET.response

The MSAP-NRLS_STATE_GET.response frame fields are explained in following table.

Table 39: MSAP-NRLS_STATE_GET.response frame fields

Field

Name
Size

Valid

Values
Description

State 1 1,2

The return result of the corresponding MSAP-
NRLS_STATE_GET.request. The different
values are defined as follows:
1 = NRLS is active
2 = NRLS is not active

Remain
sleep time

4 0-0x93A80
Remaining Wirepas Mesh stack sleep time in
seconds. (Time is updated every 3 seconds)

2.3.14.7. MSAP-NRLS_GOTOSLEEP_INFO.request

Request time in seconds which was used in previous NRLS sleep request starting from

application NRLS sleep request until stack enters to NRLS sleep. Returned time in MSAP-

NRLS_GOTOSLEEP_INFO.response includes total time used including application callbacks

during that period.

Figure 50: MSAP-NRLS_GOTOSLEEP_INFO.request

Primitive ID Frame ID
Payload

length
CRC

1 octet 1 octet 1 octet 2 octets

Primitive ID Frame ID
Payload

length
State

Remain

sleep time
CRC

1 octet 1 octet 5 octet 1 octet 4 octet 2 octets

Primitive ID Frame ID
Payload

length
CRC

1 octet 1 octet 1 octet 2 octets

45
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

2.3.14.8. MSAP- NRLS_GOTOSLEEP_INFO.response

The MSAP-NRLS_GOTOSLEEP_INFO.response issued by the stack as a response to the

MSAP-NRLS_GOTOSLEEP.request.

Figure 51: MSAP-NRLS_GOTOSLEEP_INFO.response

The MSAP-NRLS_GOTOSLEEP_INFO.response frame fields are explained in following table.

Table 40: MSAP-NRLS_GOTOSLEEP_INFO.response frame fields

Field

Name
Size

Valid

Values
Description

LatestNRLS
goto sleep
time

4 0 to 0x93A80

Time in seconds which was used in previous
NRLS sleep request starting from application
NRLS sleep request until stack enters to NRLS
sleep. Time is total time used including
application callbacks during that period.

2.3.15. MSAP-MAX_MESSAGE_QUEUING Service

The maximum message queuing services are used to change or read the current value of the

time for how long the message is hold in the node’s queue before it is discarded. Queuing time

can be changed to normal and high priority messages.

Select queuing time carefully, too short value might cause unnecessary message drops and too

big value filling up message queues. For consistent performance it is recommended to use the

same queuing time in the whole network.

Minimum queuing time shall be bigger than access cycle interval in TDMA networks. It is

recommended to use multiples of access cycle interval (+ extra) to give time for message

repetitions, higher priority messages taking over the access slot etc. Access cycle is not limiting

the minimum value in CSMA-CA networks.

Precision of the time when message is discarded depends on the checking interval of message’s

age. Interval is 1s in CSMA-CA and 15s for energy saving reasons in TDMA networks i.e.

precision is 1s or 15s depending on used channel access method.

The MSAP-MAX_MESSAGE_QUEUING service includes following primitives:

• MSAP-MAX_QUEUE_TIME_WRITE.request

• MSAP-MAX_QUEUE_TIME_WRITE.confirm

• MSAP-MAX_QUEUE_TIME_READ.request

• MSAP-MAX_QUEUE_TIME_READ.confirm

2.3.15.1. MSAP-MAX_QUEUE_TIME_WRITE.request

This request is issued by the application layer to change the maximum queuing time for

messages. The request frame is depicted in Figure 52.

46
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Primitive
ID

Frame ID Payload
length

Priority Time CRC

1 octet 1 octet 1 octet 1 octet 2 octets 2 octets

Figure 52 MSAP-MAX_QUEUE_TIME_WRITE.request

 The MSAP-MAX_QUEUE_TIME_WRITE.request frame fields are explained in Table 41.

Table 41 MSAP-MAX_QUEUE_TIME_WRITE.request frame fields

Field
Name

Size Valid Values Description

Priority 1 0 - 1

Message priority which queuing time to be
set.
0 = User traffic class 0, i.e. normal priority
1 = User traffic class 1, i.e. high priority.

Time 4 2 – 65534

Maximum queuing time in seconds.
Read instructions in chapter 2.3.15.

Default time values after factory reset:
Normal priority: 600s = 10 min.
High priority: 300s = 5 min.

2.3.15.2. MSAP-MAX_QUEUE_TIME_WRITE.confirm

The MSAP-MAX_QUEUE_TIME_WRITE.confirm is issued in response to the MSAP-

MAX_QUEUE_TIME_WRITE.request. The confirmation frame is depicted in Figure 53.

Figure 53 MSAP-MAX_QUEUE_TIME_WRITE.confirm

The MSAP-MAX_QUEUE_TIME_WRITE.confirm frame fields are explained in Table 42.

Table 42 MSAP-MAX_QUEUE_TIME_WRITE.confirm frame fields

Field
Name

Size Valid Values Description

Result 1 0, 3

The return result of the corresponding MSAP-
MAX_QUEUE_TIME_WRITE.request:
0 = Success
3 = Failure: Invalid priority or time

2.3.15.3. MSAP-MAX_QUEUE_TIME_READ.request

This request is issued by the application layer to read the current value of the maximum queuing

time. The request frame is depicted in Figure 54.

Primitive

ID
Frame ID

Payload

length
Result CRC

1 octet 1 octet 1 octet 1 octet 2 octets

47
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Primitive
ID

Frame ID Payload
length

Priority CRC

1 octet 1 octet 1 octet 1 octet 2 octets

Figure 54 MSAP-MAX_QUEUE_TIME_READ.request

 The MSAP-MAX_QUEUE_TIME_READ.request frame fields are explained in Table 43.

Table 43 MSAP-MAX_QUEUE_TIME_READ.request frame fields

Field
Name

Size Valid Values Description

Priority 1 0 - 1

Message priority which queuing time to be
read.
0 = User traffic class 0, i.e. normal priority
1 = User traffic class 1, i.e. high priority.

2.3.15.4. MSAP-MAX_QUEUE_TIME_READ.confirm

The MSAP-MAX_QUEUE_TIME_READ.confirm is issued in response to the MSAP-

MAX_QUEUE_TIME_READ.request. The confirmation frame is depicted in Figure 55.

Primitive
ID

Frame ID Payload
length

Result Time CRC

1 octet 1 octet 1 octet 1 octet 2 octets 2 octets

Figure 55 MSAP-MAX_QUEUE_TIME_READ.confirm

 The MSAP-MAX_QUEUE_TIME_READ.confirm frame fields are explained in Table 44.

Table 44 MSAP-MAX_QUEUE_TIME_READ.confirm frame fields

Field
Name

Size Valid Values Description

Result 1 0, 3

The return result of the corresponding MSAP-
MAX_QUEUE_TIME_READ.request:
0 = Success
3 = Failure: Invalid priority

Time 2 2 - 65534
Read value of maximum queuing time in
seconds.

2.3.16. MSAP Attributes

The MSAP attributes are specified in Table 45.

Table 45. MSAP attributes

Attribute name Attribute ID Type Size

mStackStatus 1 R 1

mPDUBufferUsage 2 R 1

mPDUBufferCapacity 3 R 1

Reserved 4 - -

mEnergy 5 R/W 1

mAutostart 6 R/W 1

mRouteCount 7 R 1

mSystemTime 8 R 4

48
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Attribute name Attribute ID Type Size

mAccessCycleRange 9 R/W 4

mAccessCycleLimits 10 R 4

mCurrentAccessCycle 11 R 2

mScratchpadBlockMax 12 R 1

mMulticastGroups 13 R/W 40

2.3.16.1. mStackStatus

Attribute ID 1

Type Read only

Size 1 octet

Valid values 0x00 – 0x3f or 0x80

Default value -

The Stack status attribute indicates whether the stack is running or not, and whether it can be

started. The stack status is a bit field with individual bits defined in Table 46.

Table 46. Stack status bits

Bit number Description

0 (LSB) 0: Stack running
1: Stack stopped

1 0: Network address set
1: Network address missing

2 0: Node address set
1: Node address missing

3 0: Network channel set
1: Network channel missing

4 0: Node role set
1: Node role missing

5 0: Application configuration data valid
1: Application configuration data missing (valid only on sink device)

6 Reserved

7 (MSB) Reserved

2.3.16.2. mPDUBufferUsage

Attribute ID 2

Type Read only

Size 1 octet

Valid values 0 – cPDUBufferSize

Default value -

The PDUs processed by the stack are stored in a buffer. There is a maximum limit for the number

of PDUs that can fit in the buffer (see CSAP cPDUBufferSize attribute in section 2.4.4.6). The

mPDUBufferUsage attribute tells how many PDU items there are in the buffer at the moment.

2.3.16.3. mPDUBufferCapacity

Attribute ID 3

Type Read only

Size 1 octet

Valid values 0 – cPDUBufferSize

Default value -

The mPDUBufferCapacity attribute indicates the number of PDUs that can still fit in the stack PDU

buffer at the moment (i.e. cPDUBufferSize - mPDUBufferUsage).

49
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

2.3.16.4. mEnergy

Attribute ID 5

Type Read and write

Size 1 octet

Valid values 0 – 255

Default value 255

The stack can use in its route cost calculations the state of energy remaining in each node. The

state can be set with the mEnergy attribute. It is a value between 0 and 255, where 0 corresponds

to a state where the node is almost out of energy and 255 corresponds to a state where maximum

amount of energy is available.

The value is currently used in route cost calculations with a granularity of 32 units. In other words,

the energy value must change by at least 32 units for it to affect the cost calculations.

This attribute is intended to be set by the application periodically, to enable the stack routing layer

to use energy parameter in cost and route calculation.

The specifics on how the remaining energy is measured is left for the responsibility of the

application due to fact that different power sources and measurement circuits may be used

depending on the implementation.

2.3.16.5. mAutostart

Attribute ID 6

Type Read and write

Size 1 octet

Valid values 0 or 1

Default value 1

The stack auto-start function starts the stack automatically after boot (e.g. when returning from

power down or when the stack is internally booted). A value of 1 enables auto-start, 0 disables it.

2.3.16.6. mRouteCount

Attribute ID 7

Type Read only

Size 1 octet

Valid values 0 or 1

Default value -

Whenever there is a route to sink, the mRouteCount attribute is 1, otherwise 0.

2.3.16.7. mSystemTime

Attribute ID 8

Type Read only

Size 4 octets

Valid values 0 to 4294967295

Default value -

The stack keeps track of time in 1/128 s increments. Attribute mSystemTime can be used to read

the amount of time elapsed from the stack startup. mSystemTime wraps back to 0 about every

388 days.

2.3.16.8. mAccessCycleRange

Attribute ID 9

50
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Type Read and write

Size 4 octets

Valid values See description below

Default value Not set

Normally the stack chooses a suitable access cycle automatically, between 2, 4 or 8 seconds,

depending on the amount of network traffic. Some applications may need to further limit the

access cycle durations in use. Attribute mAccessCycleRange can be used to do that.

Two 16-bit values are packed in one 32-bit attribute: top 16 bits contain the maximum access

cycle duration, bottom 16 bits contain the minimum access cycle duration. Access cycle durations

are expressed in milliseconds, so valid values for minimum and maximum are 2000, 4000 and

8000.

If mAccessCycleRange is not set, or maximum > minimum, the stack chooses an appropriate

access cycle based on the amount of network traffic. If maximum = minimum, the user can force

the access cycle to a specific duration. mAccessCycleRange is not set by default. Only a factory

reset (see section 2.4.3) can restore mAccessCycleRange back to the unset state.

Note: When CSMA-CA mode is set as device role (see chapter2.4.4.4), setting

mAccessCycleRange cannot be done

2.3.16.9. mAccessCycleLimits

Attribute ID 10

Type Read only

Size 4 octets

Valid values See description below

Default value 0x1f4007d0

The mAccessCycleLimits attribute can be read to determine the valid values for

mAccessCycleRange (see section 2.3.16.8). Similarly to mAccessCycleRange, two 16-bit values

are packed in one 32-bit attribute: top 16 bits contain the maximum valid access cycle duration,

bottom 16 bits contain the minimum valid access cycle duration.

In current Wirepas Mesh firmware release, the value of mAccessCycleLimits is (8000 << 16)

+ 2000, or 0x1f4007d0, i.e. the minimum valid access cycle duration is 2000 ms and the

maximum valid access cycle duration is 8000 ms. (4000 ms is also a valid access cycle duration,

but that possibility is not encoded in the value of mAccessCycleLimits.)

2.3.16.10. mCurrentAccessCycle

Attribute ID 11

Type Read only

Size 2 octets

Valid values 2000, 4000, 8000

Default value -

The mCurrentAccessCycle attribute reports the currently used access cycle, in milliseconds.

2.3.16.11. mScratchpadBlockMax

Attribute ID 12

Type Read only

Size 1 octet

Valid values -

Default value -

51
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

The attribute mScratchpadBlockMax contains the value for maximum number of bytes in an

MSAP-SCRATCHPAD_BLOCK request (see section 2.3.13.3).

2.3.16.12. mMulticastGroups

Attribute ID 13

Type Read and Write

Size 10 * 4 octets

Valid values See description below

Default value 10 x 0xFFFFFFFF

The attribute mMulticastGroups tells in which multicast groups the device belongs to. When data

packet is sent with multicast group address (see chapter 2.1), only nodes belonging to that group

will receive it. Each group is 4 octets long with following value ranges:

- 0: Don’t care value

- 1-0x00FF FFFF: Belonging to multicast groups 0x8000 0001-0x80FF FFFF

- Other values reserved for future use

Note: Albeit the chapter 2.1 defines the multicast addresses to be in range between 0x80000000-

0x80FFFFFF, MSB byte (0x80) is not used in this attribute. As well, it is not possible to declare

membership to group 0x80000000 (since 3 LSB bytes would be 0).

The value of the attribute is the collection of 10 groups. All values must be given. If device belongs

to less than 10 groups, use value 0 of don’t care value. Devices don’t have to belong to any

groups (which is default value). Don’t care values can reside at the middle of the sequence. Same

value can present multiple times in the sequence. Addresses can reside in the sequence in any

order.

When data is transmitted to the multicast groups, all the nodes that belong to that group receive

the message. Few examples:

Table 47: mMulticastGroups examples

Value of the attribute Description

0x01000000 0x00000000
0x00000000 0x00000000
0x00000000 0x00000000
0x00000000 0x00000000
0x00000000 0x00000000

Device belongs to multicast group 0x8000 0001 only

0x01000000 0x02000000
0x03000000 0x04000000
0x05000000 0x06000000
0x07000000 0x08000000
0x09000000 0x0A000000

Device belongs to multicast groups 0x8000 0001 –
0x8000 000A.

0x0A000000 0x09000000
0x08000000 0x07000000
0x06000000 0x05000000
0x04000000 0x03000000
0x02000000 0x01000000

Device belongs to multicast groups 0x8000 0001 –
0x8000 000A. Values can be in any order

0x00000000 0x00000000
0x00000000 0x00000000
0x00000000 0x00000000
0x00000000 0x00000000
0x00000000 0x00000000

Device does not belong to any group

52
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Value of the attribute Description

0x00000000 0x00000000
0x00000000 0x00000000
0x05000000 0x00000000
0x00000000 0x00000000
0x00000000 0x00000000

Device belongs to multicast group 0x8000 0005 only
(note: values can be in any order)

0x01000000 0x01000000
0x00000000 0x00000000
0x00000000 0x00000000
0x00000000 0x00000000
0x00000000 0x00000000

Device belongs to multicast group 0x8000 0001 only. It is
ok to set same multicast group multiple times.

0x01000000 0x00000000
0x00000000 0x00000000
0x00000000 0x00000000
0x00000000 0x00000000
0x00000000

Invalid length

0x01000000 0x00000000
0x00000000 0x00000000
0x00000000 0x00000000
0x00000000 0x00000000
0x00000000 0x00000000
0x00000000

Invalid length

2.4. Configuration Services (CSAP)

The configuration services are used to control the stack configuration.

2.4.1. CSAP-ATTRIBUTE_WRITE Service

The CSAP-ATTRIBUTE_WRITE service can be used by the application layer to write the

configuration attributes to the stack. The CSAP-ATTRIBUTE_WRITE service includes the

following primitives:

• CSAP-ATTRIBUTE_WRITE.request

• CSAP-ATTRIBUTE_WRITE.confirm

The CSAP-ATTRIBUTE_WRITE service primitives’ frame formats are identical with the MSAP-

ATTRIBUTE_WRITE service (See section 2.3.8). Only differences are used primitive IDs and

valid attributes that can be read/written. For valid CSAP attributes see section 2.4.4.

Note: The configuration attributes can only be written when the stack is in stopped state.

2.4.2. CSAP-ATTRIBUTE_READ Service

The CSAP-ATTRIBUTE_READ service can be used by the application layer to read the

configuration attributes from the stack. The CSAP-ATTRIBUTE_READ service includes the

following primitives:

• CSAP-ATTRIBUTE_READ.request

• CSAP-ATTRIBUTE_READ.confirm

The CSAP-ATTRIBUTE_READ service primitives’ frame formats are identical with the MSAP-

ATTRIBUTE_READ service (See section 2.3.9). Only differences are used primitive IDs and valid

attributes that can be read/written. For valid CSAP attributes see section 2.4.4.

53
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

2.4.3. CSAP-FACTORY_RESET Service

The persistent attributes can be cleared using the CSAP-FACTORY_RESET service. The CSAP-

FACTORY_RESET service includes the following primitives:

• CSAP-FACTORY_RESET.request

• CSAP-FACTORY_RESET.confirm

2.4.3.1. CSAP-FACTORY_RESET.request

The CSAP-FACTORY_RESET.request issued by the application layer when the persistent

attributes should be cleared. The CSAP-FACTORY_RESET.request frame is depicted in Figure

56.

Figure 56. CSAP-FACTORY_RESET.request frame

The CSAP-FACTORY_RESET.request frame fields (solid border in the figure) are explained in

Table 48.

Table 48. CSAP-FACTORY_RESET.request frame fields

Field Name Size Valid Values Description

ResetKey 4
0x74 0x49 0x6F 0x44
(“DoIt” in ASCII)

Special key value used to verify that user
wants to clear persistent values.

2.4.3.2. CSAP-FACTORY_RESET.confirm

The CSAP-FACTORY_RESET.confirm issued by the stack as a response to the CSAP-

FACTORY_RESET.request. The CSAP-FACTORY_RESET.confirm frame is depicted in Figure

57.

Figure 57. CSAP-FACTORY_RESET.confirm frame

The CSAP-FACTORY_RESET.confirm frame fields are explained in

Table 49.

Table 49. CSAP-FACTORY_RESET.confirm frame fields

Field Name Size Valid Values Description

Result 1 0 – 2

The return result of the corresponding CSAP-
FACTORY_RESET.request. The different values
are defined as follows:
0 = Success
1 = Failure: Stack in invalid state to clear attributes
2 = Failure: Attempted to use an invalid reset key
3 = Failure: Access denied (see section 2.4.4.21)

Primitive

ID
Frame ID

Payload

length
Reset key CRC

1 octet 1 octet 1 octet 4 octets 2 octets

Primitive

ID
Frame ID

Payload

length
Result CRC

1 octet 1 octet 1 octet 1 octet 2 octets

54
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

2.4.4. CSAP Attributes

The CSAP attributes are specified in Table 50.

Table 50. CSAP attributes

Attribute name Attribute ID Type Size

cNodeAddress 1 R/W 4

cNetworkAddress 2 R/W 3

cNetworkChannel 3 R/W 1

cNodeRole 4 R/W 1

cMTU 5 R 1

cPDUBufferSize 6 R 1

cScratchpadSequence 7 R 1

cMeshAPIVersion 8 R 2

cFirmwareMajor 9 R 2

cFirmwareMinor 10 R 2

cFirmwareMaintenance 11 R 2

cFirmwareDevelopment 12 R 2

cCipherKey 13 W 16

cAuthenticationKey 14 W 16

cChannelLimits 15 R 2

cAppConfigDataSize 16 R 1

cHwMagic 17 R 2

cStackProfile 18 R 2

cOfflineScan 20 R/W 2

cChannelAllocMap 21 R/W 4

cFeatureLockBits 22 R/W 4

cFeatureLockKey 23 W 16

2.4.4.1. cNodeAddress

Attribute ID 1

Type Read and write

Size 4 octets

Valid values Any valid unicast address

Default value Not set

Attribute cNodeAddress sets the address of the node. See section 2.1 for details.

2.4.4.2. cNetworkAddress

Attribute ID 2

Type Read and write

Size 3 octets

Valid values 0x000001 – 0xFFFFFE

Default value Not set

cNetworkAddress, the network address, is used by the radio to detect valid transmissions and to

filter out both noise and other transmissions which do not belong to the same network. The

network address must be identical for all nodes within the same network. Multiple Wirepas Mesh

networks can coexist within an area, if they are configured to use different network addresses.

Due to the way radios detect valid transmissions, some network addresses are better than others.

A good network address should have no repetition or patterns. Examples of poor network

addresses: 0x000000, 0xFFFFFF, 0xAAAAAA, 0x555555. When choosing a network address for

a network, using a 24-bit random number as the network address is recommended.

55
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

2.4.4.3. cNetworkChannel

Attribute ID 3

Type Read and write

Size 1 octet

Valid values Limits defined by cChannelLimits attribute

Default value Not set

Each network has a default channel, set by the cNetworkChannel attribute. The network channel

must be identical for all nodes within the same network. Available radio channel range depends

on the radio hardware and frequency band of operation. See attribute cChannelLimits in section

2.4.4.15.

The network channel is used for finding neighbors in a situation where no neighbors are yet

known, e.g. right after the stack has started.

2.4.4.4. cNodeRole

Attribute ID 4

Type Read and write

Size 1 octet

Valid values Table 51

Default value 0x82

A Wirepas Mesh network consists of sinks, routing nodes and non-routing nodes. Attribute

cNodeRole sets the node role. A valid roles are listed in Table 51.

56
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Table 51. Node roles

Value Base role Description

0x00 Reserved

0x01 Sink A device that is usually connected to a server backbone.
All data packets sent to the AnySink address end up in
here. Similarly, all diagnostic data generated by the
network itself is transmitted to a sink device.

0x02 Router Node A device that is fixed to be capable of routing traffic for
other nodes in time slotted mode.

0x03 non-router node A device that is part of the network but does not route
traffic of other nodes in time slotted mode. Mainly used in
extremely low-power devices.

0x04 –
0x0F

Reserved

0x11 CSMA-CA mode
Sink

When this is enabled, the sink keeps the receiver enabled
all the time when it is not transmitting. Then, the latency
on sending data to sink is way faster with the expense on
higher power consumption. Intended to be used only with
mains-powered devices.

0x12 CSMA-CA mode
Router node

When this is enabled, the router node keeps the receiver
enabled all the time when it is not transmitting. Then, the
latency on sending data to router node is way faster with
the expense on higher power consumption. Intended to
be used only with mains-powered devices.

0x13 CSMA-CA mode
non-router node

When this is enabled, the non-router node keeps the
receiver enabled all the time when it is not transmitting.
Then, the latency on sending data to router node is way
faster with the expense on higher power consumption.
Intended to be used only with mains-powered devices.

0x14 –
0x81

Reserved

0x82 Router node with
automatic role
selection

A node that is boots up as Router node and capable of
routing traffic for other nodes in time slotted mode. Router
node is evaluating its role to ensure that there are not too
many routing nodes within the radio range. It is highly
recommended to enable this in dense and large
networks.

0x83 Non-router node
with automatic role
selection

A node that is boots up as non-router node and without
capable of routing traffic for other nodes in time slotted
mode. Node is evaluating its role to ensure that there is
sufficient amount of routing nodes within the radio range.
It is highly recommended to enable this in dense and
large networks.

0x83-0x91 Reserved

0x92 CSMA-CA mode
Router node with
automatic role
selection

A node that is boots up as Router node and capable of
routing traffic for other nodes in CSMA-CA mode. Router
node is evaluating its role to ensure that there are not too
many routing nodes within the radio range. It is highly
recommended to enable this in dense and large
networks.

0x93 CSMA-CA Non-
router node with
automatic role
selection

A node that is boots up as non-router node and without
capable of routing traffic for other nodes in CSMA-CA
mode. Node is evaluating its role to ensure that there is
sufficient amount of routing nodes within the radio range.
It is highly recommended to enable this in dense and
large networks.

0x94-0xFF reserved

57
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

2.4.4.5. cMTU

Attribute ID 5

Type Read only

Size 1 octet

Valid values Depends on the radio profile

Default value -

Attribute cMTU contains the Maximum Transmission Unit (MTU) i.e. maximum APDU payload

size in octets.

2.4.4.6. cPDUBufferSize

Attribute ID 6

Type Read only

Size 1 octet

Valid values -

Default value -

The PDUs processed by the stack are stored in a buffer. There is a maximum limit for the number

of PDUs that can fit in the buffer, as indicated by the cPDUBufferSize attribute. See sections

2.3.16.2 and 2.3.16.3 for information about current PDU buffer usage.

2.4.4.7. cScratchpadSequence

Attribute ID 7

Type Read only

Size 1 octet

Valid values 0 – 255

Default value -

Attribute cScratchpadSequence indicates the sequence number of the OTAP scratchpad present

in the node, or 0 if there is no scratchpad stored in the node.

2.4.4.8. cMeshAPIVersion

Attribute ID 8

Type Read only

Size 2 octets

Valid values 1 – 255

Default value -

The cMeshAPIVersion attribute can be read to determine which version of Wirepas Mesh Dual-

MCU API is implemented by the current stack firmware version.

2.4.4.9. cFirmwareMajor

Attribute ID 9

Type Read only

Size 2 octets

Valid values -

Default value -

The cFirmwareMajor attribute stores the firmware release major version number, i.e. the first

number in the four-part version number: major.minor.maintenance.development.

58
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

2.4.4.10. cFirmwareMinor

Attribute ID 10

Type Read only

Size 2 octets

Valid values -

Default value -

The cFirmwareMinor attribute stores the firmware release minor version number, i.e. the second

number in the four-part version number: major.minor.maintenance.development.

2.4.4.11. cFirmwareMaintenance

Attribute ID 11

Type Read only

Size 2 octets

Valid values -

Default value -

The cFirmwareMaintenance attribute stores the firmware release maintenance version number,

i.e. the third number in the four-part version number: major.minor.maintenance.development.

2.4.4.12. cFirmwareDevelopment

Attribute ID 12

Type Read only

Size 2 octets

Valid values -

Default value -

The cFirmwareDevelopment attribute stores the firmware release development version number,

i.e. the fourth number in the four-part version number: major.minor.maintenance.development.

2.4.4.13. cCipherKey

Attribute ID 13

Type Write only

Size 16 octets

Valid values 0x00..00 – 0xFF..FF

Default value 0xFF..FF

Attribute cCipherKey sets the key that is used for encrypting radio transmissions. A value of

0xFF..FF means that the key is not set.

It is not possible to read the encryption key back. However, it is possible to detect whether a key

is set or not. When reading the key value, the error value 4 (Failure: Invalid attribute value or

attribute value not yet set) indicates that key is not set. And error value of 5 (Failure: Write-only

attribute) indicates that the key has been set. Writing a key value with all bits set (0xFF..FF) clears

the key.

Note: In order for encryption to be enabled, both Cipher and Authentication keys must be set. If

only one of them is set, no encryption or authentication is performed.

2.4.4.14. cAuthenticationKey

Attribute ID 14

Type Write only

Size 16 octets

59
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Valid values 0x00..00 – 0xFF..FF

Default value 0xFF..FF

Attribute cAuthenticationKey sets the key that is used for verifying the authenticity of received

data. A value of 0xFF..FF means that the key is not set.

It is not possible to read the authentication key back. However, it is possible to detect whether a

key is set or not. When reading the key value, the error value 4 (Failure: Invalid attribute value or

attribute value not yet set) indicates that key is not set. And error value of 5 (Failure: Write-only

attribute) indicates that the key has been set. Writing a key value with all bits set (0xFF..FF) clears

the key.

Note: In order for encryption to be enabled, both Cipher and Authentication keys must be set. If

only one of them is set, no encryption or authentication is performed.

2.4.4.15. cChannelLimits

Attribute ID 15

Type Read only

Size 2 octets

Valid values 0x0101 – 0xFFFF

Default value -

Attribute cChannelLimits can be read to determine the allowed range of network channel

numbers. See attribute cNetworkChannel in section 2.4.4.3.

Lower 8 bits are the first available channel, upper 8 bits are the last available channel. Available

radio channel range depends on the radio hardware and frequency band of operation.

2.4.4.16. cAppConfigDataSize

Attribute ID 16

Type Read only

Size 1 octet

Valid values 80

Default value -

Size of app config data in octets. See sections 2.3.5-2.3.7.

2.4.4.17. cHwMagic

Attribute ID 17

Type Read only

Size 2 octets

Valid values 1 – 3

Default value -

The cHwMagic attribute indicates the radio hardware used. Hardware identifiers are listed in Table

52.

60
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Table 52. Hardware identifiers

Value Radio hardware

0x01 Nordic Semiconductor nRF51x22

0x02 Silicon Labs EFM32 (256 kB Flash / 32 kB RAM)

0x03 Nordic Semiconductor nRF52832 (512 kB Flash / 64 kB RAM)

0x04 Reserved

0x05 Silicon Labs EFR32xG12 (1024 kB Flash / 128 kB RAM)

0x06 Nordic Semiconductor nRF52840 (1024 kB Flash / 256 kB RAM)

0x07 Silicon Labs EFR32xG12 (512 kB Flash / 64 kB RAM)

2.4.4.18. cStackProfile

Attribute ID 18

Type Read only

Size 2 octets

Valid values 1–3, 5-6

Default value -

The cStackProfile attribute indicates the used frequency band. Frequency bands are listed in

Table 53.

Table 53. Frequency bands

Value Frequency band

0x01 2.4 GHz +4 dBm for Nordic Semiconductor (nRF52832)

0x02 868 MHz +10 dBm for Silicon Labs (EZR32)

0x03 915 MHz +20 dBm USA for Silicon Labs (EZR32)

0x04 Reserved

0x05 917 MHz +14 dBm for Silicon Labs (EZR32)

0x06 Reserved

0x07 Reserved

0x08 865 MHz +20 dBm for Silicon Labs (EZR32)

0x09 2.4 GHz +8 dBm for Silicon Labs (EFR32)

0x10 915 MHz +13 dBm Brazil for Silicon Labs (EZR32)

0x11 915 MHz +16 dBm Australia for Silicon Labs (EFR32)

0x12 2.4 GHz +19 dBm for Silicon Labs (EFR32)

0x13 2.4 GHz +4 dBm for Nordic Semiconductor (nRF52840)

0x14 2.4 GHz +8 dBm for Nordic Semiconductor (nRF52840)

0x15 Reserved

2.4.4.19. cOfflineScan

Attribute ID 20

Type Read and write

Size 2 octets

Valid values 20 – 600

Default value CSMA-CA: 30
TDMA: 600

Attribute cOfflineScan sets the maximum limit for offline scanning interval value in seconds. When

the device does not have a route to the sink, this interval is used to find the route. The scanning

interval is a tradeoff between faster rejoin time to the network with the expense of power

consumption.

2.4.4.20. cChannelAllocMap

Attribute ID 21

61
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Type Read and write

Size 4 octets

Valid values 0x00 –
0xFFFFFFFE

Default value 0x11111111

Attribute cChannelAllocMap can be used to dedicate radio channels for devices that have CB-

MAC role definition enabled or devices that do not (see section 2.4.4.4).

Each bit in the value represents one radio channel. LSB equals the first available channel (see

section 2.4.4.15). If bit is set, the radio channel is dedicated for devices that are configured to CB-

MAC mode. If bit is not set, the radio channel is dedicated for devices that are not configured to

CB-MAC mode. The default value equals 25% of channels to be dedicated for devices configured

to CB-MAC mode.

This attribute is mainly important in dense networks and by using this attribute, the amount of

devices within radio range can be maximized. For example: if none of the devices are configured

to CB-MAC mode, it is recommended to set this value as 0.

Note: This attribute must be the same throughout the network to operate correctly!

Note: WM FW v3.6.0, v3.6.6, v3.6.7, v3.5.32, v3.5.36 releases and v4.0.xx release onwards

cChannelAllocMap attribute does not exists anymore - writing this attribute will return an

error code (1 = Failure: Unsupported attribute ID).

2.4.4.21. cFeatureLockBits

Attribute ID 22

Type Read and write

Size 4 octets

Valid values See description below

Default value 0xFFFFFFFF

Certain stack features can be disabled by using the cFeatureLockBits and cFeatureLockKey (see

section 2.4.4.22) attributes. Supported feature lock bits are listed in Table 54.

A feature can be disabled by clearing its feature lock bit to zero. By default, no features are

disabled, i.e. the feature lock bits are all set. Reserved bits cannot be set to zero. Feature lock is

only in effect when a feature lock key is set.

62
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

Table 54. Feature lock bits

Lock bits Feature

0x00000001 Prevent sending data via Dual-MCU API

0x00000002 Reserved

0x00000004 Prevent starting stack via Dual-MCU API

0x00000008 Prevent stopping stack via Dual-MCU API

0x00000010 Prevent setting app config data via Dual-MCU API

0x00000020 Prevent reading app config data via Dual-MCU API

0x00000040 Prevent writing MSAP attributes via Dual-MCU API

0x00000080 Prevent reading MSAP attributes (except mScratchpadBlockMax and
mRouteCount) via Dual-MCU API

0x00000100 Prevent writing CSAP attributes (except cFeatureLockKey)

0x00000200 Prevent reading CSAP attributes (except cScratchpadSequence) via Dual-
MCU API

0x00000400 Reserved

0x00000800 Reserved

0x00001000 Prevent performing factory reset via Dual-MCU API

0x00002000 Prevent scratchpad write operations via Dual-MCU API

0x00004000 Reserved

0x00008000 Prevent reading scratchpad status (including mScratchpadBlockMax and
cScratchpadSequence attributes) via Dual-MCU API

0x00010000 Reserved

0x00020000 Reserved

0x00040000 Reserved

0x00080000 Reserved

0x00100000 Reserved

0x00200000 Prevent reading neighbor information (including mRouteCount attribute) via
Dual-MCU API

0x00400000 Prevent scanning for neighbors via Dual-MCU API

0x00800000 Reserved

0x01000000 Reserved

0x02000000 Prevent affecting the sink cost via Dual-MCU API

0x04000000 Prevent reading the sink cost via Dual-MCU API

0x08000000 Reserved

0x10000000 Reserved

0x20000000 Prevent sending Remote API requests via Dual-MCU API

0x40000000 Reserved

0x80000000 Prevent participating in OTAP operations

2.4.4.22. cFeatureLockKey

Attribute ID 23

Type Write only

Size 16 octets

Valid values 0x00..00 – 0xFF..FF

Default value 0xFF..FF

Attribute cFeatureLockKey sets the key that is used for enabling the feature lock. A value of

0xFF..FF means that the key is not set. Feature lock bits (see section 2.4.4.21) are only in effect

when a key is set.

When a feature lock key is set, it can only be cleared by writing cFeatureLockKey with the correct

key. This clears the key, i.e. sets a key value with all bits set (0xFF..FF).

It is not possible to read the feature lock key back. However, it is possible to detect whether a key

is set or not. When reading the key value, the error value 4 (Failure: Invalid attribute value or

63
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

attribute value not yet set) indicates that key is not set. And error value of 5 (Failure: Write-only

attribute) indicates that the key has been set.

2.5. Response Primitives

All stack indications must be acknowledged by the application using a response-primitive. All the

response-primitives have the same frame format as illustrated in Figure 58. Only thing that

changes is the Primitive ID. The values of the primitive IDs are listed in Table 3.

Figure 58. Generic response-primitive frame

The response-primitive frame fields are explained in Table 55.

Table 55. Generic response-primitive frame fields

Field Name Size Valid Values Description

Result 1 0 or 1

The result field indicates if the application is ready to
receive another pending indication (if there are any).
The different values are defined as follows:
0 = Do not send more indications
1 = Send next pending indication

2.6. Sequence Numbers

Some Wirepas Mesh stack services, such as the application configuration data service (sections

2.3.5-2.3.7) make use of 8-bit sequence numbers. When new data is entered on the network, the

sequence number needs to be incremented, so that nodes can differentiate between old and new

data.

Due to the limited numeric range of an 8-bit sequence number, the following wrap-around rule is

utilized:

• A is larger than B if (A - B) AND 128 is 0, unless A equals B

For example, values 0 to 127 are considered to be larger than 255, but values 128 to 254 are

considered smaller than 255. Likewise, values 1 to 128 are seen as greater than 0, but values

129 to 255 are seen as less than 0.

Primitive

ID
Frame ID

Payload

length
Result CRC

1 octet 1 octet 1 octet 1 octet 2 octets

64
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

3. Common Use Cases

This section describes various problem cases with Wirepas Mesh Dual-MCU API as well as

guidance on various issues for the user.

3.1. Required Configuration

Each node requires some configuration in order the Wirepas Mesh stack to operate and establish

communication. The required services to be configured are explained in Table 56.

Table 56. Required node configuration

Service
See
section

Description

CSAP_ATTRIBUTE_WRITE /
cNodeAddress

2.4.4.1
A unique device identifier must be set. This is
used to distinguish nodes from each other on
a network.

CSAP_ATTRIBUTE_WRITE /
cNetworkAddress

2.4.4.2
Device network to join. Each device on a
network must share the network address.

CSAP_ATTRIBUTE_WRITE /
cNetworkChannel

2.4.4.3
One channel in allocated specially for
network operations and must be same for
each device on a network.

CSAP_ATTRIBUTE_WRITE /
cNodeRole (optional)

2.4.4.4
Role of a device must be set. Node can be a
sink, a headnode capable of routing or a non-
routing subnode.

CSAP_ATTRIBUTE_WRITE /
cCipherKey (optional)

2.4.4.13

If encryption of network traffic is desired, a
cipher key must be set. Without cipher or
authentication keys the encryption is
disabled.

CSAP_ATTRIBUTE_WRITE /
cAuthenticationKey (optional)

2.4.4.14

If encryption of network traffic is desired, an
authentication key must be set. Without
cipher or authentication keys the encryption
is disabled.

MSAP-
APP_CONFIG_DATA_WRITE
(optional)

2.3.5
Note: This applies only for sinks! Headnodes
or subnodes get their configuration data from
the network and cannot have it set directly.

MSAP_STACK_START 2.3.2
Apply settings and begin communicating with
other nodes on the network.

65
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

4. Annex A: Additional CRC Information

This Annex gives an example CRC implementation and test vectors.

4.1. Example CRC Implementation

#include <stdint.h>

// lut table size 512B (256 * 16bit)

static const uint16_t crc_ccitt_lut[] =

{

 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7, \

 0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef, \

 0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6, \

 0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de, \

 0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485, \

 0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d, \

 0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4, \

 0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc, \

 0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823, \

 0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b, \

 0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12, \

 0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a, \

 0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41, \

 0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49, \

 0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70, \

 0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78, \

 0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f, \

 0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067, \

 0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e, \

 0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256, \

 0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d, \

 0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405, \

 0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c, \

 0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634, \

 0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab, \

 0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3, \

 0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a, \

 0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92, \

 0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9, \

 0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1, \

 0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8, \

 0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0 \

66
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

};

uint16_t Crc_fromBuffer(uint8_t * buf, uint32_t len)

{

 uint16_t crc = 0xffff;

 uint8_t index;

 for (uint32_t i = 0; i < len; i++)

 {

 index = buf[i] ^ (crc >> 8);

 crc = crc_ccitt_lut[index] ^ (crc << 8);

 }

 return crc;

}

4.2. CRC Test Vectors

Table 57. CRC Test Vectors

CRC Input (octets in hex) CRC Output (octets in
hex), LSB first

CRC input length
(octets)

None FF FF 0

0C 01 02 01 00 C2 B1 5

8C 01 05 00 01 00 01 05 48 33 8

0E 02 02 01 00 9D 6E 5

8E 02 08 00 01 00 04 FF FF FF
00

F2 4F 11

0D 03 07 01 00 04 01 00 00 00 8D C4 10

8D 03 01 00 0x0A1F 4

67
www.wirepas.com

WP-RM-100 – Wirepas Mesh Dual-MCU API Reference Manual - v5.1A

© Wirepas Ltd. 2020
Confidential

5. References

[1] WP-AN-311 - Non-Router Long Sleep (NRLS)

	1. Introduction
	1.1. Service Access Points
	1.2. Primitive Types
	1.3. Attributes
	1.4. Serial Interface Specification
	1.5. General Frame Format
	1.6. Flow Control
	1.7. UART Configuration
	1.8. Endianness and Bit Order
	1.9. Timing
	1.10. CRC Calculation (CRC-16-CCITT)

	2. Stack Service Specification
	2.1. Node Addressing
	2.2. Data Services (DSAP)
	2.2.1. DSAP-DATA_TX Service
	2.2.1.1. DSAP-DATA_TX.request
	2.2.1.2. DSAP-DATA_TX.confirm
	2.2.1.3. DSAP-DATA_TX_TT.request
	2.2.1.4. DSAP-DATA_TX_TT.confirm
	2.2.1.5. DSAP-DATA_TX.indication

	2.2.2. DSAP-DATA_RX Service
	2.2.2.1. DSAP-DATA_RX.indication

	2.3. Management Services (MSAP)
	2.3.1. INDICATION_POLL Service
	2.3.1.1. MSAP-INDICATION_POLL.request
	2.3.1.2. MSAP-INDICATION_POLL.confirm

	2.3.2. MSAP-STACK_START Service
	2.3.2.1. MSAP-STACK_START.request
	2.3.2.2. MSAP-STACK_START.confirm

	2.3.3. MSAP-STACK_STOP Service
	2.3.3.1. MSAP-STACK_STOP.request
	2.3.3.2. MSAP-STACK_STOP.confirm

	2.3.4. MSAP-STACK_STATE Service
	2.3.4.1. MSAP-STACK_STATE.indication

	2.3.5. MSAP-APP_CONFIG_DATA_WRITE Service
	2.3.5.1. MSAP-APP_CONFIG_DATA_WRITE.request
	2.3.5.2. Reserved values in AppConfigData
	2.3.5.3. MSAP-APP_CONFIG_DATA_WRITE.confirm

	2.3.6. MSAP-APP_CONFIG_DATA_READ Service
	2.3.6.1. MSAP-APP_CONFIG_DATA_READ.request
	2.3.6.2. MSAP-APP_CONFIG_DATA_READ.confirm

	2.3.7. MSAP-APP_CONFIG_DATA_RX Service
	2.3.7.1. MSAP-APP_CONFIG_DATA_RX.indication

	2.3.8. MSAP-ATTRIBUTE_WRITE Service
	2.3.8.1. MSAP-ATTRIBUTE_WRITE.request
	2.3.8.2. MSAP-ATTRIBUTE_WRITE.confirm

	2.3.9. MSAP-ATTRIBUTE_READ Service
	2.3.9.1. MSAP-ATTRIBUTE_READ.request
	2.3.9.2. MSAP-ATTRIBUTE_READ.confirm

	2.3.10. MSAP-GET_NBORS Service
	2.3.10.1. MSAP-GET_NBORS.request
	2.3.10.2. MSAP-GET_NBORS.confirm

	2.3.11. MSAP-SCAN_NBORS Service
	2.3.11.1. MSAP-SCAN_NBORS.request
	2.3.11.2. MSAP-SCAN_NBORS.confirm
	2.3.11.3. MSAP-SCAN_NBORS.indication

	2.3.12. MSAP-SINK_COST Service
	2.3.12.1. MSAP-SINK_COST_WRITE.request
	2.3.12.2. MSAP-SINK_COST_WRITE.confirm
	2.3.12.3. MSAP-SINK_COST_READ.request
	2.3.12.4. MSAP-SINK_COST_READ.confirm

	2.3.13. MSAP-SCRATCHPAD Services
	2.3.13.1. MSAP-SCRATCHPAD_START.request
	2.3.13.2. MSAP-SCRATCHPAD_START.confirm
	2.3.13.3. MSAP-SCRATCHPAD_BLOCK.request
	2.3.13.4. MSAP-SCRATCHPAD_BLOCK.confirm
	2.3.13.5. MSAP-SCRATCHPAD_STATUS.request
	2.3.13.6. MSAP-SCRATCHPAD_STATUS.confirm
	2.3.13.7. MSAP-SCRATCHPAD_UPDATE.request
	2.3.13.8. MSAP-SCRATCHPAD_UPDATE.confirm
	2.3.13.9. MSAP-SCRATCHPAD_CLEAR.request
	2.3.13.10. MSAP-SCRATCHPAD_CLEAR.confirm

	2.3.14. MSAP-NON-ROUTER LONG SLEEP (NRLS) Service
	2.3.14.1. MSAP-NRLS.request
	2.3.14.2. MSAP-NRLS.confirm
	2.3.14.3. MSAP-NRLS_STOP.request
	2.3.14.4. MSAP-NRLS_STOP.confirm
	2.3.14.5. MSAP-NRLS_STATE_GET.request
	2.3.14.6. MSAP-NRLS_STATE_GET.response
	2.3.14.7. MSAP-NRLS_GOTOSLEEP_INFO.request
	2.3.14.8. MSAP- NRLS_GOTOSLEEP_INFO.response

	2.3.15. MSAP-MAX_MESSAGE_QUEUING Service
	2.3.15.1. MSAP-MAX_QUEUE_TIME_WRITE.request
	2.3.15.2. MSAP-MAX_QUEUE_TIME_WRITE.confirm
	2.3.15.3. MSAP-MAX_QUEUE_TIME_READ.request
	2.3.15.4. MSAP-MAX_QUEUE_TIME_READ.confirm

	2.3.16. MSAP Attributes
	2.3.16.1. mStackStatus
	2.3.16.2. mPDUBufferUsage
	2.3.16.3. mPDUBufferCapacity
	2.3.16.4. mEnergy
	2.3.16.5. mAutostart
	2.3.16.6. mRouteCount
	2.3.16.7. mSystemTime
	2.3.16.8. mAccessCycleRange
	2.3.16.9. mAccessCycleLimits
	2.3.16.10. mCurrentAccessCycle
	2.3.16.11. mScratchpadBlockMax
	2.3.16.12. mMulticastGroups

	2.4. Configuration Services (CSAP)
	2.4.1. CSAP-ATTRIBUTE_WRITE Service
	2.4.2. CSAP-ATTRIBUTE_READ Service
	2.4.3. CSAP-FACTORY_RESET Service
	2.4.3.1. CSAP-FACTORY_RESET.request
	2.4.3.2. CSAP-FACTORY_RESET.confirm

	2.4.4. CSAP Attributes
	2.4.4.1. cNodeAddress
	2.4.4.2. cNetworkAddress
	2.4.4.3. cNetworkChannel
	2.4.4.4. cNodeRole
	2.4.4.5. cMTU
	2.4.4.6. cPDUBufferSize
	2.4.4.7. cScratchpadSequence
	2.4.4.8. cMeshAPIVersion
	2.4.4.9. cFirmwareMajor
	2.4.4.10. cFirmwareMinor
	2.4.4.11. cFirmwareMaintenance
	2.4.4.12. cFirmwareDevelopment
	2.4.4.13. cCipherKey
	2.4.4.14. cAuthenticationKey
	2.4.4.15. cChannelLimits
	2.4.4.16. cAppConfigDataSize
	2.4.4.17. cHwMagic
	2.4.4.18. cStackProfile
	2.4.4.19. cOfflineScan
	2.4.4.20. cChannelAllocMap
	2.4.4.21. cFeatureLockBits
	2.4.4.22. cFeatureLockKey

	2.5. Response Primitives
	2.6. Sequence Numbers

	3. Common Use Cases
	3.1. Required Configuration

	4. Annex A: Additional CRC Information
	4.1. Example CRC Implementation
	4.2. CRC Test Vectors

	5. References

